
Construct User Guide

Stephen Dipple, Michael Kowalchuck, Neal Altman, Kathleen M. Carley

sdipple@andrew.cmu.edu, mkowalch@andrew.cmu.edu, kathleen.carley@cs.cmu.edu

May 2021

CMU-ISR-21-102

Institute for Software Research

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Center for the Computational Analysis of Social and Organization Systems

CASOS technical report

This report/document supersedes the following CMU-ISR Technical Reports:

CMU-ISR-14-105R, "Construct User Guide", December 2014

This work was supported in part by the Knight Foundation and Office of Naval Research

under a Minerva Grant (Dynamic Statistical Network Informatics, N000141512797) and

Multidisciplinary University Research Initiatives (MURI) Program (N000141712675).

Additional support for Construct was provided by the Center for Computational Analysis of

Social and Organizational Systems (CASOS) and the Center for Informed Democracy and Social

Cybersecurity (IDeaS) at Carnegie Mellon University. The views and conclusions contained in

this document are those of the authors and should not be interpreted as representing the official

policies, either expressed or implied, of the Knight Foundation, the Office of Naval Research, or

the U.S. Government.

mailto:sdipple@andrew.cmu.edu
mailto:kathleen.carley@cs.cmu.edu

Keywords: Construct, multi-agent simulation, dynamic network analysis, agent-based

modeling, information diffusion, belief diffusion, agent-based simulation, modeling, and

simulation.

Abstract

This technical report provides users and researchers information on the configuration and use

of the newest version of Construct, the CASOS dynamic network, agent-based, information and

belief diffusion simulation of complex socio-technical systems. The report provides a quick start

guide to Construct, a detailed discussion of its configuration, and use through a sample problem

and virtual experiment configuration exemplar, and a set of appendices with additional useful

information. This document is both an introduction to Construct for casual modelers as well as a

reference guide for researchers, modelers, and simulationists.

i

Table of Contents

Table of Figures .. v

Table of Tables ... v

Introduction ... 1

Agent Based Models ... 1

Introduction to the Report ... 5

Construct Versions and This Report ... 5

Conventions Used in This Document ... 5

Organization of This Overall Report ... 6

A Motivating Example .. 6

Core Mechanisms .. 7

A Scenario ... 8

PART ONE: Quick-Start Guide.. 10

The Objects ... 10

Agents .. 10

Knowledge ... 11

Time ... 11

Object Relations .. 11

The Interaction Sphere ... 12

The Knowledge Network ... 15

Outputs .. 16

Models and Construct Program Flow.. 18

Initialize Function .. 19

Think Function .. 19

Update Function .. 19

Communicate Function.. 20

Clean Up Function ... 20

Models ... 20

Thoughts on Experimentation ... 21

PART TWO: Construct in Detail .. 23

ii

Variables.. 23

Declaring, Defining, and Casting Variables .. 23

Evaluating Variables .. 27

Variables, Macros, and With Statements... 28

Using Variables ... 30

Common Gotchas .. 31

Parameters ... 32

Seed ... 32

Verbose Initialization .. 32

Nodes ... 32

Agent Node Class .. 34

Agentgroup Node Class ... 34

CommunicationMedium Node Class ... 34

Dummy Node Class ... 35

Knowledge Node Class ... 36

Time Period Node Class .. 36

Other Node Classes ... 36

Networks ... 36

Access Network ... 39

Agent Active Timeperiod Network ... 40

Agent Group Membership Network .. 40

Agent Initiation Count Network .. 41

Agent Mail Usage By Medium Network ... 41

Agent Reception Count Network .. 41

Communication Medium Access Network .. 42

Communication Medium Preferences Network .. 42

Communication Medium Preferences Network 3d ... 43

Interaction Knowledge Weight Network ... 43

Interaction Network ... 43

Interaction Probability Network .. 44

Interaction Sphere Network ... 44

iii

Knowledge Expertise Weight Network ... 44

Knowledge Forgetting Prob Network.. 44

Knowledge Forgetting Rate Network .. 45

Knowledge Group Membership Network ... 45

Knowledge Learning Difficulty Network .. 46

Knowledge Message Complexity Network ... 46

Knowledge Network .. 46

Knowledge Priority Network... 47

Knowledge Opinion Network .. 47

Knowledge Similarity Weight Network .. 47

Learnable Knowledge Network ... 48

Medium Knowledge Network ... 48

Physical Proximity Network .. 48

Physical Proximity Weight Network ... 49

Public Propensity Network .. 49

Social Proximity Network ... 50

Social Proximity Weight Network .. 50

Sociodemographic Proximity Network ... 50

Sociodemographic Proximity Weight Network .. 51

Subscription Network .. 51

Subscription Probability Network ... 51

Network Generators ... 52

Constant Network Generator .. 53

Constant3D Network Generator .. 53

CSV Network Generator ... 53

CSV_binarize Network Generator .. 54

Csv3d Network Generator ... 54

Gen_from_text Network Generator .. 54

Group_to_group Network Generator .. 55

Erdos_renyi Network Generator.. 55

iv

Multi_dimensional_preprocess_based Network Generator 55

Periodic Network Generator .. 55

Perception_based Network Generator ... 55

Preprocessor_based Network Generator .. 56

Randombinary Network Generator ... 56

Randomuniform Network Generator .. 56

Randomvalue Network Generator... 56

Sociodemographic Similarity Network Generator ... 57

Tied Network Generator .. 57

Xml_generator_loader Network Generator .. 57

Interaction Models... 57

Standard Interaction Model ... 58

Knowledge Transactive Memory Interaction Model ... 61

Twitter Interaction Model .. 63

Modification Models ... 66

Mail Model .. 66

Knowledge Learning Difficulty Model ... 67

Literacy Model .. 67

Forgetting Model ... 67

Subscription Model.. 67

Model Dependencies ... 67

Standard Interaction Model ... 67

Knowledge Transactive Memory .. 68

Twitter Interaction Model .. 69

Mail Model .. 70

Knowledge Learning Difficulty Model ... 70

Literacy Model .. 70

Forgetting Model ... 70

Subscription Model.. 70

Output .. 70

v

CSV Output ... 71

DyNetML Output .. 71

Messages Output.. 72

References ... 73

Appendices .. 77

Appendix A The Sample Input File (AKA Input Deck) .. 77

Appendix B A History of Construct ... 82

Appendix C Additional Construct Generators.. 85

Group to Group Generators ... 85

Appendix D Scripting ... 89

Reserved Words in the Construct Scripting Language and Input File 89

Testing Construct Scripts... 90

General Syntax .. 90

Logical Expressions ... 92

Generating Random Numbers ... 93

Conditional Statements - IF ... 94

Looping - Foreach ... 96

Return .. 97

Macros ... 97

Get/Set Network Values .. 99

ReadFromCSVFile .. 100

Appendix E Construct in High Performance Computing (HPC) Environments 101

Appendix F Construct in Research Literature .. 105

Table of Figures

Figure 1: A visualization of the Construct framework as a house. ... 7

Figure 2. A depiction of two ‘clean-room’ teams of product developers. 8

Figure 3. Model execution cycle: after INITIALIZATION executes once, each complete time

period begins with all models performing THINK and ends with each completing CLEAN UP.19

Table of Tables

vi

Table 1. Mechanism for evaluating variables in Construct. ... 27

Table 2. Variables as evaluated. ... 29

Table 3. Network relations to node classes. .. 36

Table 4. Types of network generators available. .. 52

Table 5. Required nodesets for the Standard Interaction model. .. 67

Table 6. Required networks for the Standard Interaction model. ... 68

Table 7. Optional networks for the Standard Interaction model. .. 68

Table 8. Required nodesets for the Knowledge Transactive Memory Interaction model. 68

Table 9. Optional networks for the Standard Interaction model. .. 69

Table 10. Required nodesets for the Twitter Interaction model. .. 69

Table 11. Required networks for the Twitter Interaction model. ... 69

Table 12. Optional networks for the Twitter Interaction model. .. 70

Table 13. Optional networks for the Mail model. ... 70

Table 14. Required networks for the Knowledge Learning Difficulty model. 70

Table 15. Optional networks for the Literacy model. ... 70

Table 16. Optional networks for the Forgetting model. .. 70

Table 17. Optional networks for the Subscription model. .. 70

Table 18 Construct Scripting Language Reserved Words①.. 89

Table 19. Examples of foreach loops. ... 96

Table 20. Examples of macros. ... 98

1

Construct User Guide

Introduction

Construct is a software framework enabling agent-based network-centric simulations.

Construct’s primary model, the Standard Interaction Model can be used to examine the co-

evolution of agents and the socio-cultural environment (Carley, 1990, 1991). Construct enables

easy examination of the evolution of networks and the processes by which information moves

around a social network (Carley, 1995; Hirshman et al., 2007a, 2007b). Construct’s models

capture dynamic behaviors in groups, organizations, and populations with different cultural and

technological configurations (Schreiber et al., 2004). Groups and organizations are complex

systems and the variability of human, technological, and organizational factors among such

systems are captured through heterogeneity in information processing capabilities, knowledge,

and resources. Multiple non-linearities in the systems generate complex temporal behavior on the

part of the agents.

Constructuralism is a mega-theory that states that the socio-cultural environment is

continually being constructed and reconstructed through individual cycles of action, adaptation,

and motivation. This theory is at the heart of Construct’s design. Many social science theories

and findings are part of the constructural theoretical approach including structuration theory

(Giddens, 1986), social information processing theory (Salancik & Pfeffer, 1978), symbolic

interactionism (Manis & Meltzer, 1978; Stryker, 1980), social influence theory (Friedkin, 1998),

cognitive dissonance (Festinger, 1957), and social comparison (Festinger, 1954). In addition,

several cognitive processes are embedded such as transactive memory (Wegner, 1987).

Construct allows for these theories to coexist and operate while minimalizing potential conflicts.

Construct has several advantages as an agent-base model framework. First, the experiment

designer has complete control over a wide range of inputs used for interaction over the course of

a run and facilitates as much customization as theories allow. Second, Construct contains a suite

of agent models, which enable diverse socio-technical conditions to be modeled. Third, general

agent characteristics can be easily configured a priori using empirical data or they can be based

on hypothetical data. To use Construct, the researcher specifies both the relevant agents

(Hirshman et al., 2007b) and the relevant networks (Hirshman et al., 2007a). Additional

information about the Construct interaction model can be found elsewhere (Carley 1991;

Hirshman et al., 2007b).

Agent Based Models

One of the most used and intuitive approaches to Social Networking Services (SNS) is Agent

Based Models (ABM). ABMs employ a bottom-up approach in which a set of heterogeneous

2

agents, their behavioral properties, the “rules” of interaction, the environment, and the interaction

topology that the agent populates is explicitly modeled. Complex social behavior emerges from

simple individual level processes. In ABMs, many computational entities, with varying levels of

cognitive complexity, interact with one another in a manner similar to the real-world entities they

represent. These agents are simplified versions of their real-life counterparts (e.g., ants, people,

robots, or groups), only retaining elements salient to the phenomena being studied. Agents

interact in a virtual world and can be constrained and enabled by the network position they

occupy.

In most ABMs, the topology of the virtual world is a simple 2-D grid and agents form

“networks” as they occupy the same or neighboring spaces or the agent’s network is prescribed

as the set other agents within so many spaces of ego. Networks generated from grid-based

interactions or defined in terms of grid-nearness tend not to have the same properties as true

social networks, i.e., the distribution of ties, the method of tie formation and dissolution, and the

relation of ties to physical space are not realistic. Most ABM toolkits support this type of grid-

based modeling of the social topology.

There is, however, a growing interest in and a growing number of ABMs where the agents

exist and move in a socio-demographic or network topology rather than a grid topology. The

Construct models are an example. In these models, the agents occupy a social network position

defined in terms of which other agents the ego agent can interact with. In other words, rather

than physical adjacency, social adjacency is used. This network topology may be static or

dynamic. This latter type of model where agents exist in dynamic social networks rather than on

grids is where most research on SNS is focusing. This approach, referred to as agent-based

dynamic-network modeling, is the approach we found to be most valuable for modeling the

adversary and it is embodied in Construct.

ABMs vary in how the environment is represented. This could be as simple as a single

dimension or array where ego interacts with those other agents that are within so many squares

left or right of ego. This is the case in Kaufman’s NK model. Traditionally, however, the

environment was a grid and the agents interacted with other agents in and/or could move to those

squares that surrounded them. Most early studies explored the relative impact of von Neuman

(squares left, right, up, down of ego) or Moore (eight squares around ego) or extended Moore

neighborhoods (squares within some distance of ego). In these traditional approaches, the

structure of the social network is directly tied to the physical position of the agents. Examples of

such models are the Game of Life (Gardner, 1970), the original Schelling segregation model

(Schelling, 1971, 1978) and the more recent SugarScape models developed by Epstein and

Axtell (1996). In general, it is difficult to get realistic social networks in this representation of the

environment. Further, as early results showed, unless the grid is bent into a torus, the resultant

social behavior is largely dictated by “edge effects”; i.e., restrictions on activity caused by being

at the edge of the physical grid.

3

More advanced models place agents in a socio-demographic space and separate the physical

and the social space. In such models, very few have explicitly modeled the social network.

Increasingly, however, researchers are incorporating more realistic network representations, such

as small-world, scale-free, or other types of network generators. The most advanced of these

models are the dynamic-network ABMs in which the networks and the agents co-evolve (the first

model of this type was Construct). In some cases, the models are instantiated with networks that

are derived from real data. These models will often generate or import an appropriate graph

before the simulation agents are initialized, and then assign each agent to a graph position when

the simulation starts. Other models use a social network gathered from empirical studies. These

networks have the advantage of being as realistic as possible but may potentially bias the

simulation results due to the structure and nature of the particular social network gathered.

Correctly specifying the topology of a social network in an agent-based model has important

implications for the conclusions drawn. In modeling an adversary, it is valuable to use the social

network of the adversarial group.

The quality of the social network modeling can have important effects on simulation

outcomes. For instance, in the Construct’s Standard Interaction Model, the social network

topology has a non-linear effect on knowledge diffusion rates in the system. Construct uses

sophisticated agents that can interact and choose partners with which to exchange knowledge and

belief. A stylized meta-network, which specifies the pattern of potential partners with which an

agent can interact, can be imposed to limit the form of the evolved networks. We use Construct

to model the adversary. Our results indicate that the most effective type of intervention depends

on how the adversary is structured, e.g., Al Qaeda and Hamas have different structures and the

same intervention, such as isolation of the top leader, in the two cases can lead to performance

decrements in one and performance improvements in the other.

Although frequently lumped together, ABMs vary widely in complexity and computational

cost – some are extremely inexpensive (e.g., Swarm) and allow hundreds of thousands or even

millions of agents to operate in the same simulation, while others are rather expensive and often

require the support of an entire processor per agent (e.g., SOAR or ACT-R). This increase in

computational expense, however, is matched by construct validity to the actions of cognitively

bounded humans: the least computationally expensive (per agent) simulations replicate the

behavior of insects (specifically ants) while ACT-R has been able to replicate the brain activation

patterns of children solving algebra problems and SOAR has replicated fighter pilot operations in

concert with human pilots.

Although economics are an important consideration in picking an agent-based simulation,

they should not be the only consideration; the specific phenomena of interest should impose its

own set of criteria. For problems of traffic analysis or collision avoidance, swarm agents are

particularly appropriate. However, in phenomena with significant cultural freight, such as those

involving deception, leadership, participation in group activities, and/or compliance with group

norms, these swarm-based technologies offer little useful insight to the policy analyst without

4

additional (expensive) modification and incurring significant increases in computational cost. At

the same time, not all group-based phenomena require the detail and expense imposed by high-

fidelity models of individual agents. Construct, which can support hundreds and thousands of

agents, supports an appropriate middle ground. It also supports one of the only agent-based

models which explicitly unites Herb Simon’s dual requirement of bounded rationality, that

rationality should be bounded both cognitively, and socially (Simon, 1957). Most of the highest-

fidelity models constrain interaction to explicit messages, if at all, and many works entirely in

isolation from other agents. Construct, thus, is less expensive and yet more useful for studying

group phenomena.

A common query is to which specific theory of group behavior does Construct adhere?

Construct does not subscribe to a specific theory of group behavior. Indeed, the question can

reflect a fundamental misunderstanding of interesting modeling work – rather, the level at which

a simulation is specifically coded/designed is its least interesting level of analysis. Analysis at

the level in which a model is coded suggests merely how well the simulation programmers did

their work, this is an important verification question, but not of practical application interest to

model consumers. It is necessary, but not sufficient, for a model to be correctly coded. Instead,

the more interesting question, available to be asked of agent-based simulations, is what are the

larger implications with how these agents interact? We call this principle “emergence”, what

larger phenomena “emerge” from the interactions of these modeled agents. Construct is, as

previously said, an agent-based simulation, and thus represents a theory of individuals and how

they choose to interact. The Standard Interaction model makes a claim based on research that

people tend to interact with other people based on two competing drives. One, that people tend to

interact with others because they believe they are similar (the drive for homophily), and two, that

people tend to interact with others who they believe have valuable knowledge they do not have

(the drive for knowledge expertise). Both of these human drives are cross-cultural.

Emergent properties of the simulation, then, are much more interesting to the agent-based

simulation modeler than the direct consequences of their modeling decisions. Based on agents

interacting with others due to knowledge expertise and homophily, Construct models have been

able to replicate many group-level behaviors found in people: the S-Shaped curve of diffusion,

yes, but also that beliefs are more durable than the information used to support a belief.

Construct has examined cultural norms in organizations, belief-changes in national decision-

makers, and group stability. In practice, Construct is a valuable support for group-level

behavioral theories because it provides an explanation rooted in individuals for the origin of

these phenomena. These emergent properties, however, may not always be intuitive to the model

consumer or model developer. At such points, it is important to recheck questions of verification,

that some bug in the model process is not to blame for the errant results. But more interesting is

when the model’s code is not in error, but the results are still surprising.

Although not directly attributable to programming error, there may be other sources of

surprising results that should be described. One, the model simulation is, at its core, not a

5

sufficiently good model of the atomic primitive it represents; this is often the case when

extending swarm agents beyond issues of traffic and navigation. Two, the experimental approach

was not well matched to the empirical reality – if, for example, 75% of adults in the population

are internet-literate, but the model assumes that only 10% of the agents will receive information

from internet sources, the model will significantly underestimate the prevalence of information

from internet sources, and there may be further cascading effects of that error. Three, the results

may simply not be well communicated. Relating accurately (and conservatively) the implications

of models is itself a skill that must be polished.

However, sometimes, the results are non-intuitive and yet none of these errors appears to be

present. In such a case, this is the value and joy in modeling counter-factual scenarios – we can

place our simulated humans in situations that do not exist and will never exist and be surprised

and intrigued by how they behave.

Introduction to the Report

Construct Versions and This Report

Construct is, like all but end-of-life software, undergoing continuing development in both its

capabilities and its implementation. Experiment developers and designers should ensure they are

using the most current version of Construct available on the CASOS public web site on the

Construct Software page. They should also ensure they are referencing the most current set of

documentation to reduce the probability of a disconnect between the documentation and the

application. Finally, experiment developers and designers should consider subscribing to the

CASOS’s ORA Google Group for ad-hoc and peer-to-peer assistance as well as assistance from

students, staff, and faculty of CASOS.

Conventions Used in This Document

Where feasible, this document quotes a provided example of a Construct experiment

configuration file. The sample file is shown in Appendix A, in a 2-up printed format, using the

courier new font in a reduced font size. The sample file is also available for download at the

Training and Sample Data page on the Construct page of the CASOS website. This report uses

the following typeface conventions:

Code snippets will also be written in the Courier New, 11 pt text. These snippets are

quotes from the demonstration input file. We will also frequently call the input file the input

deck, or shorten the name to deck, throughout the document. The origins of this use of the word

‘deck’ will deliberately remain in the mists of our collective memory lest the authors prove how

old they really are.

Construct keywords, will also use the Courier New, 11 pt font (the Code style in MS

Word). Additionally, variables and network names will use the same style.

http://www.casos.cs.cmu.edu/projects/construct/software.php
https://groups.google.com/g/ora-google-group
http://www.casos.cs.cmu.edu/projects/construct/sample.php

6

A blue box and text inside the box indicates information the

experiment developer and designer, researcher and simulationist should

be particularly aware of when using Construct.

We will reduce the extended list of potential audience members from “experiment developer

and designer, researcher and simulationist” in most cases, to “researcher” and/or “simulationist”

throughout the document.

Egos and Alters are common referents in social science literature that we will use throughout

this report. Their use simplifies establishing frames-of-reference and scoping of interaction

possibilities. When we refer to a single agent, it will most often have the label of ego. When we

refer to the agents or other entities that the ego is connected (in any sense of the word), they will

most often have the label of alter or alters. Agents in the simulation not connected to an ego are

beyond the scope of awareness of the ego, and do not directly affect the ego.

Organization of This Overall Report

The report has three main components and does not need to be read or referred to in front-to-

back sequence. The three parts are below:

PART ONE: Quick-Start Guide - for a relatively quick progression from introduction to

execution of Construct

PART TWO: Construct in Detail - for an in-depth explanation of Construct, complex inputs

and outputs and complex experiments

Appendices - for additional useful sets of information ranging from additional exemplar input

decks, to the use of Construct in High Performance Computing (HPC) environments such as

HTCondor, to brief synopses of peer-reviewed projects where Construct played a role.

A Motivating Example

One method of introducing a set of concepts and the application of those concepts to problem

solving is by a motivating example. In this report, we adopt this method and present a motivating

example for both the questions of interest (QoI) as well as an experimental configuration that can

help answer the QoI.

Like all scientists, if we are not attempting to answer a specific QoI, or even a set of QoI, it

behooves the reader to take some amount of time to focus the upcoming effort. It is appropriate

at this time to remind the experimenter that Construct’s roots lie in social network, information

diffusion and belief diffusion modeling. This motivating example will stay with this core

capability and defer discussions of additional capabilities and experimental purposes to PART

TWO: Construct in Detail.

7

Core Mechanisms

As previously mentioned, Construct is a framework which can be seen in Figure 1. In this

framework we have nodes, networks, models, input, and output. Construct’s primary function is

to properly interface all these components together like the stairs and hallways in a house. Unlike

a regular house however, Construct can expand, and contract as needed to facilitate an end user’s

requests. Construct is able to handle an arbitrary number of nodesets and networks and inputs for

those areas. Construct is also able to handle one to an arbitrary number of models assuming there

are no conflicts between models as well as many different types of output. The models and

output however are limited to what is already built into Construct.

Figure 1: A visualization of the Construct framework as a house.

While Construct is a framework for agent based simulations, the models built into Construct

are where the magic happens. The Standard Interaction model is Construct’s signature model and

the starting point for additional models and modifications. This model combines many different

aspects such as decision making, technology restrictions, and information propagation. Agents

make decisions about who to interact with, what information to transfer during an interaction,

and which communication medium to use for that interaction. The communication mediums

present technological limitations as mediums such as books, which are rich in information, but is

only one way or face-to-face conversations, which happens instantaneously in both directions.

8

Finally, when these interactions take place the resulting information spread affects the decision

making of each agent such as the search for more exclusive information as an agent’s repertoire

expands. PART TWO: Construct in Detail goes over the specifics of this and other Construct

models.

A Scenario

We, the researchers, are analysts that Acme, Inc. has hired to help Acme design two software

development teams in a ‘clean room’ configuration. Acme wants the two teams to be co-

developing a product. Acme also wants structural mechanisms in place to control how much

information flows between the two teams as a method to help reduce the probability of

unintentional release of Acme’s intellectual property. One way of visualizing this scenario is in

Figure 2. In this figure, we also call each team a cluster, aligning with the social network analysis

literature when groups of entities are meaningfully connected to each other.

Figure 2. A depiction of two ‘clean-room’ teams of product developers.

In the figure above, possible questions of interest that are appropriate for the model to help

forecast answers could be:

Without direct modeling, is there any leak of knowledge from one team/cluster to the other?

If so, how fast does the information flow?

Assuming no friendship networks or other communication networks not modeled, how fast

does specific knowledge or specific beliefs within each team spread?

Assuming a requirement to have a controlled mechanism to support the teams passing limited

information back-and-forth, to whom would such an intermediary best talk in each team for rapid

spread of information or beliefs?

Does either team have any organizational weak point that can be structurally overcome?

9

After stability is reached within teams for knowledge saturation/diffusion, what kinds and

how large are impacts of personnel turnover of various sizes and frequencies have on the group?

How long, if at all, does the team take to return to pre-turnover levels for specific measures of

interest?

These and other questions can be explored within the Construct framework. In Part 1, we will

describe the entities and key relationships between those entities. The treatment in Part 1 is

intended to be useful towards further orienting a potential model builder or a model consumer.

Part 2 describes mechanisms at a high-level of detail and is suitable to act as a reference even to

a regular user of Construct.

10

PART ONE: Quick-Start Guide

This section is an introduction to core mechanisms of Construct and its Standard Interaction

model, introduces three of the most important networks to understand, and suggests a set of

experiments that may be of some interest to the model consumer. It is intended to provide an

initial suggestion of how Construct may be useful to the model developer. More detail is

provided in the second part of this report. We assume that the example deck included in this

technical report is available to the reader of this guide.

We begin this guide by providing a summary of key objects within Construct and provide

examples of the various semantics between these key entities. We then describe, in more detail,

the more precise semantics of three critical networks in the Standard Interaction model. Next, we

show a suggestion of some experiments that could be done using only those key networks,

referencing the motivating scenario. Finally, we go over how to include additional models into

Construct and a high-level discussion of how models interact with each other.

The Objects

Construct organizes classes of objects into what we call node sets. Some examples are 1)

agents, 2) knowledge, and 3) time. A singleton example of each of these object classes is referred

to (respectively) as 1) an agent, 2) a knowledge bit, and 3) a turn. In addition, node sets are

globally available in Construct for usage in constructing networks, operations in models, and

various other areas in Construct.

Agents

Agents are the most important class of objects in Construct’s model library. Agents have,

appropriately, agency, and thus make choices that can potentially affect other agents. Typically,

agents represent human-like entities, but researchers can also represent other types of entities

such as sources of information (e.g., newspapers, radio programs, or television ads) and

information technology (IT) systems (e.g., databases, data-stores). Agents have various critical

capacities and capabilities that we will address briefly here and more thoroughly throughout the

report.

Individual agents possess different bits of knowledge and can be aware of other agents. An

important lesson this guide hopes to teach is how to manipulate both what agents know, and who

they know.

Agents may also be members of groups. This can be useful for labeling and categorizing

outputs and making per-group analysis easier. Group members, like in our motivating example,

tend to have many more connections within the group than outside of it. It can often be easier,

but not semantically important, to define groups of agents contiguously. If I were, for example

going to group my digits by which hand they are on, it would be easier for me to simply count

them off, so that my right hand’s digits were 0,1,2,3, and 4, while my left hand’s digits were

11

5,6,7,8, and 9. Then, all I need to remember is that my right hand’s digits start at 0 and end at 4,

while my left hand’s start at 5 and end at 9. Alternatively, I could count them off by functional

role (right thumb 0, left thumb 1, right pointer 2, left pointer 3, etc.), but that would quickly

become confusing if their membership in my hand groups was their most salient characteristic.

Individuals can also be connected to any other node set and they may change over time.

Information on this is out of scope on this portion of the guide but will be discussed in Part 2.

Just as with people, some agents may have more capacity than others to send or receive

information. As with people, they may have more or less retentive memories than others. And, as

with people, they may have more or less social reach than others. Specifics on how to implement

any of these (and other) characteristics is included in Part 2.

Knowledge

Knowledge represents information. The Standard Interaction model interprets real-world

knowledge through a stylized and simplified series of bits (0 or 1). Any particular knowledge bit

typically represents a single atomic piece of information, such as “Sol is the name of the star at

the center of our solar system”, or “Each water molecule is comprised of two hydrogen and one

oxygen atom.” It is incumbent on a researcher to keep the stylized representation consistent in

their experiments – one bit should not represent “How to pilot a 747-jumbo jet” while another bit

represents ‘flight departed’, without proper modification to how those bits connect to the rest of

the model.

Time

Turns, in Construct, represent chunks of discrete time and is the only node set that is

embedded in Construct’s architecture. Each turn various events can happen such as an agent’s

opportunity to interact with other agents. It is usually good practice to attempt to identify,

loosely, a length of time represented by each turn. Turns may be minutes, days, weeks, or

months. This mapping of turns to time periods should be chosen relative to the knowledge being

transmitted during each turn – it is unrealistic for highly complex knowledge, such as “Civilian

Flight Operations”, to be conveyed in less than some number of months or years. Thus, either the

number of knowledge bits that represents Civilian Flight Operations is very large, or turns are

likely to represent weeks or months in this model (or both).

Object Relations

In Construct, we note how each of these various objects are related to each other using dense

matrices. These matrices are global and can be operated on by any component of Construct

including various models. Each matrix usually referred to as a network or a graph, represents a

meaningful and distinct tie between objects. Matrix values may be binary (either 0 or 1),

weighted (any real number), or relational (strings or characters). These networks can represent

relationships between objects of the same class (single mode), or between objects of different

12

classes (a multi-mode matrix). The objects listed down the rows are always listed first, then the

objects in each column.

‘0’ is usually a safe default value for matrices, indicating no connection between the entities.

Non-zero values usually indicate that the two entities (represented by the row-column pair) are

“connected”. There are exceptions, discussed in Part 2, for the various ‘weight’ networks.

For example, a binary (0 or 1s) Agent x Knowledge multi-mode matrix might look like:

 Biology Physics Sociology

Aba 1 1 0

Jane 0 1 1

Lu 0 1 1

Raj 1 0 1

Fred 1 0 0

In practice, each of these large areas would be represented by a range of knowledge bits,

since none of these sciences are single atomic facts, but as an example we hope it suffices.

Part 2 will discuss all the different matrices present in Construct’s models, their real-world

meaning, and their practical impact within Construct. This guide will focus on two key networks

that prevalent through much of Construct’s models: the interaction sphere, the knowledge

network. It will also show you the snippet of XML code required to specify each of these key

networks.

The Interaction Sphere

The interaction sphere defines “who may know who”. It is a single-mode, Agent x Agent,

binary matrix.

If two agents in the interaction matrix have no connections, they will

never be able to interact directly with each other. Agents that have

connects in the interaction matrix may never interact due to random

number generation and probabilities.

Because agents must be able to interact to pass information, it is easy to see how changes to

the interaction sphere can change how the experiment will play out. Generally, agents should not

be connected in the interaction sphere if it is unlikely, they would ever have reason to interact.

Separate organizations, for example, may not have any connections to each other, save perhaps

through explicit liaison personnel.

13

Here is the code required to specify the interaction sphere:

<network src_nodeclass_type="agent" target_nodeclass_type="agent"

id="interaction sphere network" link_type="bool" network_type="dense">

 <generator type="randombinary">

 <rows first="0" last="nodeclass::agent::count_minus_one"/>

 <cols first="0" last="nodeclass::agent::count_minus_one"/>

 <param name="mean" value="1"/>

 <param name="symmetric_flag" value="false"/>

 <param name="mean" value="1"/>

 </generator>

</network>

This is your first exposure to Construct XML, so it may seem a little daunting at first, but let

us parse this XML line by line.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"

The network at the beginning indicates we are defining one of the matrices used in

Construct. The argument src_nodeclass_type tells us that the matrix we are defining should

have rows defined by agents, and the target_nodeclass_type argument tells us that the

columns should also be defined by agents.

id="interaction sphere network" link_type="bool"

The id argument gives us the name of this network. As Construct loads in graphs arbitrarily,

this name is used as a reference to find specific graphs in the various components of Construct.

The link_type argument tells us that this network is Boolean (stored as a binary value), either

a link exists (1/True/T), or it does not (0/False/F).

network_type="dense">

Currently all networks will have this argument network_type set to dense. This means that

every possible cell combination should be defined. It is the goal for any developer to try to plan

for the future, and we intend to add additional network types in future.

<generator type="randombinary">

The generator is a new object; it is being defined to help us fill in the values of the

interaction sphere. There are different generator types - this type, a randombinary generator,

will generate only 1s or 0s. It generates 1s at a given rate. A more complete discussion of the

various generator types is under the Generating Random Numbers heading.

<rows first="0" last="nodeclass::agent::count_minus_one"/>

14

All numbers used to count things in Construct XML use cardinal

numbers, also known as “computer science counting”, where the first

index value is 0, not 1.

Thus, the last digit on my right hand is digit number 4, not 5, even though I have five digits. I

have, using cardinal numbers, counted out five numbers (0, 1, 2, 3, and 4). The rows object tells

the generator in what parts of the matrix it should assign numbers. You can (and often will) use

multiple generators for one network. In this case, the generator should assign values for all rows

of the matrix - 0 is the first agent, and agent::count_minus_one is a built-in mechanism for

Construct to identify the number of nodes in a node set. It works with all defined node sets in the

input file. It is a handy shorthand, so you do not need to keep track of how many agents exist.

All generators (except one) assume that they should fill in all values inclusive of and between

the first and last of both the row and column arguments. The one exception, not discussed in

detail here, is reading in a network from a file. Thus, if you want two or more groups of agents,

you may want to keep track of the start and end of those groups. Therefore, it is usually easier to

number your agents contiguously by their most important group affiliation, as discussed

previously with hands and digits in the Agents section above.

<cols first="0" last="nodeclass::agent::count_minus_one"/>

This serves the same purpose as the previous line, except it defines what columns the

generator will be assigning values to. As you can probably guess, we are assigning values (either

1s or 0s) to all columns as well. This means this generator will provide a value for every cell in

the matrix.

<param name="mean" value="1"/>

This is the parameter that defines how often a “1” is likely to come up. In this case, a 1

should populate every cell in this matrix. What does that mean for our simulation? Think about it

for a second. Done? In this case, it means that every agent can talk to every other agent. If you

were going to modify this code for use in our motivating example, how might you go about it?

<param name="symmetric_flag" value="false"/>

The symmetric_flag is very important, and important to understand. Not all relationships

go both ways. My boss, for example, may have access to me, but I do not always have access to

my boss. If the president wants to see me, he will, but I cannot bully my way into the Oval

Office. If the symmetric flag is set to the true, then none of the relationships in your group will

be asymmetric - they will all go both ways. If it is set to false, then some asymmetries may arise,

but not necessarily. Would there be any asymmetrical relationships in this network, given the

generator, as you understand it to date? Multi-mode matrices should not have the symmetric_flag

set to true.

15

</generator>

This indicates that the generator definition is complete and closes the object.

</network>

This closes the definition of the network, remember, you may have multiple generators in a

single network definition. I include the entire XML snippet again for easy review; we hope it is

easier to understand the second time. Beneath it, I give my read-aloud version of how I parse this

network and relate it verbally.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"

id="interaction sphere network" link_type="bool" network_type="dense">

 <generator type="randombinary">

 <rows first="0" last="nodeclass::agent::count_minus_one"/>

 <cols first="0" last="nodeclass::agent::count_minus_one"/>

 <param name="mean" value="1"/>

 <param name="symmetric_flag" value="false"/>

 <param name="mean" value="0.20"/>

 </generator>

</network>

“This is the interaction sphere network; it is an agent by agent network with boolean/binary

links. It uses a random-binary generator, which will define values for every agent to every agent.

This random-binary generator will put 1’s in approximately 20% of the cells of this matrix. The

generator is not explicitly symmetric.”

It is important to note that each column agent that has a link to a

row agent is in that row agent’s sphere of influence. In the case the

network is not symmetric, some ego agents may not be in an alter’s

sphere of influence, but the alter agent in the ego agent’s sphere. This is

an important aspect when construct communities and connections

between communities.

The Knowledge Network

The knowledge network defines “who knows what”. It is a multi-mode, Agent x Knowledge,

non-binary matrix. A ‘1’ in this matrix indicates the agent “knows” the fact represented by that

bit. The knowledge network can be updated throughout the run of a simulation by a variety of

models. Other models may simply observe the knowledge network.

Agents can only communicate knowledge that they “know,” or have access to, when they

interact with other agents. Thus, changes in the knowledge network will have strong effects on

how the simulation proceeds.

This is the Construct XML used to define the knowledge network in our example deck and

how I would read it aloud:

16

<network src_nodeclass_type="agent" target_nodeclass_type="knowledge"

id="knowledge network" link_type="float" network_type="dense">

 <generator type="randombinary">

 <rows first="0" last="nodeclass::agent::count_minus_one"/>

 <cols first="0" last="nodeclass::knowledge::count_minus_one"/>

 <param name="mean" value="0.1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

This is the knowledge network; it is an agent by knowledge network

with non-binary links. It uses a random-binary generator, which will

define values for every agent to every knowledge bit. The random-binary

generator uses a probability of ‘.1’ to place a 1 in each cell. The

generator is not, both explicitly and functionally, symmetric.

Most of the XML looks very similar to the previous example.

Outputs

Researchers and simulations usually compare outputs of Construct simulations by examining

files written over the course of the simulation. It is outside the scope of this quick start guide to

offer in-depth suggestions on how to deal with large quantities of simulation data. We will

instead go over the basic tools available in this guide.

When Construct writes matrices to file(s), as in this example to a

comma separated value file, it will separate each row from the others

with a line termination symbol appropriate for the host operating

system (Carriage Return/Line Feed for Windows-type OS). If a researcher

has Construct write multiple time periods to a single file, each time

period is separated from others with a single empty line.

Here is an example that we will start with followed by a break down each component.

<outputs>

 <output name="output_graph">

 <parameter name="network_name" value="knowledge network"/>

 <parameter name="output_file" value="knowledge.csv"/>

 <parameter name="timeperiods" value="all"/>

 </output>

 <output name="output_graph">

 <parameter name="network_name" value="interaction network"/>

 <parameter name="output_file" value="sphere.csv"/>

 <parameter name="timeperiods" value="last"/>

 </output>

</outputs>

17

A quick overview shows the output element of the deck with two outputs. The knowledge

network is being dumped by the first output in the file “knowledge.csv” for all time periods. In

the second output, the interaction network is being dumped into sphere.csv, but only the network

as it appears at the last time period.

<output name=”output_graph”>

This indicates what type of output is requested. Outputting the graphs is the primary method,

but other methods are available in Construct.

<parameter name="network_name" value="knowledge network"/>

This line indicates which network is to be output. Only one network can be output at a time

per output. It is important to note that the network name much match the network name in the

input deck. Additionally, networks not supplied in the input deck can still be output if a model

creates its own network, see “interaction network” in Part 2.

<parameter name="output_file" value="knowledge.csv"/>

An output file name is required for output. Files are saved in the working directory from

which construct is executed.

<parameter name="timeperiods" value="all"/>

Two options are available for output, all or last. When all is called, all time periods are

output as described above. last only outputs the last time period. This can be useful when only

the end result is required.

18

Models and Construct Program Flow

Models in Construct operate using a plug and play methodology. Ideally, each model can run

simultaneously while operating on the same set of nodes and networks. However, there are

always limitations when attempting to create an arbitrary interface for which the models to

interact. For example, a previously existing model would not know to access a new network

created for a newer model.

 One method that allows better compatibility between models is its implementation of a

message exchange. By allowing each model to manipulate the messages that other models may

want to send, certain behaviors can be obtained without editing a model’s source code in a way

that would not be possible by editing of networks. As we will show below, models can cause

standard messages to be delayed in a mailbox type data structure or create irregularities in a

message based on an agent’s lack of literacy. In addition, viewing these messages can give

models usage statistics for behaviors like a “use it or lose it” style of forgetting knowledge.

To accomplish this goal, all models have a similar structure. First models load only the

nodesets and networks that the model requires from Construct. Each model then performs a

standard set of instructions which can be seen in the Figure 3. Each model has a set of five

functions that are called in the order shown that ensure models can create, manipulate, parse, and

digest messages. Each function is completed by all the models before any model advances to the

next step (i.e., each model completes the Think function before any model performs the Update

function). Additionally, most models can be separated into interaction models, in which the

primary purpose is to determine how interactions form and create messages to be sent between

an interaction pair and manipulation models, in which the primary purpose to manipulate flow

and content of messages. Below we dive into the five functions that allow the sufficient

generality to achieve plug and play functionality of models.

19

Figure 3. Model execution cycle: after INITIALIZATION executes once, each complete time

period begins with all models performing THINK and ends with each completing CLEAN UP.

Initialize Function

The Initialization function is called at the beginning of the simulation once. The primary

purpose of the initialize function is to check for the existence of other models. As much as this

project aims for models to be independent, it is inevitable that some models are mutually

exclusive with other models. The initialize function allows each model to check for other

mutually exclusive models after all other models have been loaded in. In addition, some models

may change behavior based on the presence of other models which can also be checked here.

This function is only performed once, prior to the start of the model execution cycle proper.

Think Function

The Think function is a critical function for the interaction models as this function's primary

purpose is generating messages. Messages creation in this step is generally independent of other

models. Some possible secondary dependencies may arise if one model modifies a network

another model uses, however this is not done by any of the currently developed models. This

function is the first function executed in the model execution cycle during a time period.

Update Function

The Update function allows each model a chance to manipulate messages created by other

models. This ranges from adding additional information to a message, modifying existing

information in the message, removing information in a message, removing a message entirely, to

20

copying a message to send to another recipient, as well as additional fringe cases. This function

is the second executed during a time period.

Communicate Function

The Communicate function takes in each individual message and parses its contents. Each

model is responsible for parsing the contents of messages it creates as well as any information it

tacked onto another model’s message. This allows each model the partition itself from each other

which having to worry about additional content that may be in a message. This can be

particularly useful as the node and message information space increases as previously existing

models will not require modification. This function is the third executed during a time period.

Clean Up Function

The Clean Up function allows each model to update various strategies and characteristics

based on the communicated messages in preparation for the next time period’s Think function.

This function is the last function executed in the model execution cycle during a time period.

Models

Below shows the list of available Construct models. There are two types of models:

Interaction Models and Modification Models. Interaction models generate messages that agents

exchange, where Modification models primarily modify already existing messages.

• Standard Interaction Model

o The most fundamental version of Construct’s interaction models which relies

on proximity, similarity, and expertise to find well suited interaction partners.

• Knowledge Transactive Memory Model

o An expansion on the Standard Interaction model, this model utilizes an error

prone memory of who knows what to provide more realistic interaction

seeking.

• Twitter Interaction Model

o A model that describes how individuals use the Twitter social media platform

and how opinions can spread in this environment.

• Mail Model

• Knowledge Learning Difficulty Model

• Literacy Model

• Forgetting Model

• Subscription Model

Here is an example of calling a model. Each model is unique and adding multiple models with

the same name will result in warnings that redundant models are being discarded. Models may

also have parameters that are specific to that model which is elaborated upon in each model’s

section in PART TWO: Construct in Detail.

21

<models>

 <model name="Knowledge Transactive Memory Interaction Model"/>

 <param name=”false_positive_rate” value=”0.2”/>

 <param name=”false_negative_rate” value=”0.3”/>

 <param name=”threshold” value=”0.1”/>

 <model name="Forgetting Model"/>

</models>

Thoughts on Experimentation

In this guide, we have discussed a set of primitive objects in Construct and three key

networks. These networks are:

• the interaction sphere networks, which defines “who could ever know who”,

• the knowledge network, which defines “who knows what”, and

• knowledge transactive memory, which defines “what people think other people know”.

The example deck, as provided, does not quite the serve the needs of the scenario as given.

This is intentional. The changes required are relatively minor, and can be confronted with a

variety of approaches, but should be explored directly. The motivating scenario suggests:

• Two groups of agents

• Each group has unique knowledge to their group.

• The two groups are, initially, completely isolated from each other.

Whereas, the deck, as shown here says that:

• All agents connected to all other agents.

• All agents have similar knowledge.

Obviously, some effort will need to be made to reconfigure the interaction-sphere and the

knowledge network so that groups can be isolated and that groups may have unique knowledge.

We leave it up to the reader to consider how such a change may be achieved. Remember that

multiple generators can be used to define values for portions of the matrix space.

ORA is a complementary tool to Construct. ORA is a network analysis tool capable of

creating and analyzing meta-networks, a collection of nodes and networks, and dynamic meta-

networks, a collection of nodes and networks that can vary over time. Naturally, this tool can be

used to analyze the time dependent networks that Construct produces. Construct thus supports

output in the DyNetML XML file format that ORA uses to import dynamic meta-networks.

Usage of this method can be seen in Section DyNetML Output.

In addition, ORA can be used to create and manipulate nodes and networks which can be

imported into Construct. This is expanded upon in PART TWO: Construct in Detail in the

relevant sections regarding node and network generation. A common problem is misspellings

when creating nodesets and networks in ORA for use in Construct. It is critical that any networks

or nodesets created in ORA by the user have the exact name that Construct expects (i.e.,

“knowledge network” or “agents”). In addition, many models expect attributes in a nodeset. In

http://www.casos.cs.cmu.edu/projects/ora/index.php
http://www.casos.cs.cmu.edu/projects/dynetml/

22

ORA, this can be done by importing attributes from a text file, or by adding attributes to existing

nodesets and editing the attribute values with tools such as Transform Attribute Values to

manipulate attribute values.

23

PART TWO: Construct in Detail

This section of the report, to some degree, repeats information provided in Part 1: Construct

Essentials. This is a deliberate choice by the authors.

Part 2 provides in-depth details of the workings of Construct. Topics include the operations

of an example deck, the outputs from an example deck, agents, knowledge, binary knowledge,

non-binary knowledge, forgetting, transactive memory of knowledge, beliefs, belief formation

equations, tasks, binary task selection, energy tasks, biased binary task selection, interactions,

and additional special topics included as appendices. Throughout this portion of the report and

the appendices, we assume that readers have some familiarity with general programming

concepts and terminology – which may lead us to skip details that an introduction to

programming text would include but would seem pedantic here.

Variables

Declaring, Defining, and Casting Variables

Variables in Construct are generally user specified constants for a specific simulation.

Modifying the values of Construct variables is part of the Scripting Language support, which

Appendix D discusses in detail. Researchers frequently use variables to make the input file easier

to read and adjust for future simulations – changing a value in a single place makes maintaining

consistency easier than relying on ‘search and replace.’ Examples of variable use include setting

the total number of agents, changing agent group sizes as a function of the number of agents, and

many other uses. Construct expects variables to be at the top of the input file enclosed in paired

<construct_vars></construct_vars> ConstructML tags. Modelers declare and assign

initial values to variables once, and then reference that variable whenever needed throughout the

input deck. Below is a sample of ConstructML showing the four ways a modeler can declare and

define variables:

1. declare and define as a constant (var1, var2, var3 below).

2. declare and define in terms of another, previously declared, variable (var4 below).

3. declare and define in terms of a mathematical or logical operation on other prior-

declared variables or constants (var4 and var5 below).

4. declare them and assign constant values read from a Comma Separated Variable

(CSV) file (time_count below).

Modelers must declare variables prior to using them, or Construct’s

parser will fail.

<construct_vars>

24

<var name="[name]" value="[value]"

with="[delay_interpolation|verbose|details|preserve_white_space|preserve_s

paces_only]"/>

...

<!-- examples of var declarations and definitions -->

 <var name=”var1” value=”1” />

 <var name=”var2” value=”’var2 as string’” />

 <var name=”var3” value=”var3 as another string” />

 <var name=”var4” value=”construct::intvar::var1” />

 <var name=”var5” value=”construct::intvar::var1+1” />

 <var name=”var6”

 value=”construct::intvar::var1+construct::intvar::var1” />

 <var name="param_file_name" value="params.csv"/>

 <var name="param_name_column" value="0"/>

 <var name="param_value_column" value="1"/>

 <var name="time_count"

 value="readFromCSVFile[construct::stringvar::param_file_name,

 construct::intvar::num_turns_param_row,

 construct::intvar::param_value_column]"/>

</construct_vars>

The keywords that a modeler can insert into the with attribute of the var tag cause

Construct to perform in specific ways.

• delay_interpolation causes Construct to not evaluation variables or expressions while

conducting the first pass of parsing. This prevents the XML parser from interpreting the xml

attribute as code during the initial parsing phase and instead treats it as text.

• verbose causes Construct to be verbose as it evaluates the name and value attributes. The

value of the parameter both before parser initialization, after parser completion, and after

evaluation are printed for diagnostic and debugging purposes. Additionally, should the parser

encounter an error, this keyword tells the parser to provide a more verbose error message.

• details can be used in conjunction with the verbose parameter to determine the values of

macro substitution parameters. While the verbose keyword can be used to debug a simple

math expression, it may be necessary to see additional information about the state of the

parser as it evaluates macro expressions. The details parameter prints out any information

about variables in use, in addition to some very specific information about the internal state

of the parser as it examines the input string. Should the parser encounter an error, it should

also provide more information about the parameter value.

• preserve_white_space causes Construct to treat all white spaces as important to the

expression. Construct will not remove tabs, returns, spaces, and comments as the expression

is evaluated. By default, all white space is removed during the creation of variables. If

included as a keyword, however, any white space in the value will be preserved when the

parser is run.

• preserve_spaces_only causes Construct to treat only spaces as important to the

expression. Thus, Construct will preserve spaces but ignore returns, tabs, and comments.

Using this parameter will allow for newlines to be placed in scripts which must preserve

spaces.

25

Construct variables are not case sensitive. Construct converts

variables to lowercase for internal use.

Like many programming languages, Construct requires variables start with an alphabetical

letter. Variables can use ASCII alphanumerics and the underscore; other special characters will

cause the parser to fail. Variable names are globally accessible throughout a simulation’s input

file and must therefore be unique across the simulation’s input file; there is no lexical scoping or

overloading. Construct supports the multiple variable types though the astute reader will note the

above ConstructML has no explicit typing associated with each variable. The supported variable

types are floats/decimal values, integer values, strings, Booleans, and even expressions that can

be evaluated as scripts. Appendix D discusses scripts, scripting, and evaluation of script

segments in detail. To reference a variable, a modeler would type the following as a general

syntax:

construct::[type]::[variable name]

An example of a variable reference would be:

construct::boolvar::short_experiment

While the [variable name] field can refer to any variable defined within the simulation,

there are a limited number of [type] values that Construct accepts. The use of [type] helps

Construct cast the [variable name] to the appropriate C++ type for processing.

If a modeler omits construct::[type]:: as a preface to [variable

name], Construct will attempt to deduce the variable type.

Modelers who rely on Construct’s built-in type heuristics for type guessing may get

unexpected results and the authors highly encourage the verbose method of referring to variables

in input decks! The five supported values for [type] are shown, in alphabetical order, below.

§ boolvar, defines the variable as a Boolean (true or false). Construct follows the C

convention that zero is false, non-zero is true. The authors highly recommend modelers to use

the newer convention of zero is false, and one is true. If the modeler is attempting to cast a

variable to a float, the following casting rules are in place.

• If casting from a non-zero integer or float, Construct casts the value as true.

• If casting a zero-valued integer or float, Construct casts the value as false.

• If casting from a string, if the string is “true” (case insensitive) or evaluations to a non-

zero integer or float, Construct casts the value as true; otherwise, it casts the value as

false.

26

§ floatvar, defines the variable as a float (sometimes referred to as double in this report).

Construct supports positive and negative floats. If the modeler is attempting to cast a variable to

a float, the following casting rules are used.

• If casting from an integer, Construct simply adds a decimal place and zeros.

• If casting from a bool, Construct treats false as 0.0 and true as 1.0.

• If casting from a numeric string (e.g., ‘2’, ‘2.15’), Construct will cast to a float and

maintain or add decimal place digits as appropriate.

• If a mathematical function uses an integer value as a float variable, the result will be a

float value.

• If casting from a non-numeric string or other variable that cannot be cast as a number,

Construct silently casts the value as 0.0. There is no mechanism to warn a modeler of this

situation in the deck during parsing, nor during execution.

§ intvar, defines the variable as an integer. Construct supports positive and negative

integers. If the modeler is attempting to cast a variable to an integer, the following casting rules

are used.

• If casting from float/double to integer, Construct silently truncates the original value.

There is no mechanism to warn a modeler of this situation in the deck during parsing, nor

during execution.

• If casting from a bool, Construct treats false as 0 and true as 1.

• If casting from a numeric string (e.g., ‘2’, ‘2.15’), Construct will cast to an integer, and

silently truncate, as it does with floats/doubles.

• If casting from a non-numeric string or other variable that cannot be cast as a number,

Construct silently casts the value as 0. There is no mechanism to warn a modeler of this

situation in the deck during parsing, nor during execution.

§ stringvar, defines the variable as a string.

Construct can cast all variable types to strings.

If the modeler decides to omit the single quotation marks in the variable declaration (e.g.,

var3 above), Construct may still treat the variable as a string. It does this if the first white-space

separated word in the string is not a Construct-reserved word. This behavior is silent. There is no

mechanism to warn a modeler of this situation in the deck during parsing, nor during execution.

§ expressionvar, defines a variable as an expression. Construct evaluates the expression

and returns it. An expression can evaluate to any of the other four [type] though it may require

the modeler to cast the result to the desired final [type].

There are at least two ways of casting a variable, or an expression composed of variables.

The first is to cast within the value attribute of a var tag. Some examples are below. The second

is to assign the value of one variable to another variable and cast it during the assignment

process.

27

<var name="cast_example1" value="(4/2):bool"/>

<var name="cast_example2" value="(4/2):string"/>

<var name="cast_example3" value="(4.0/2.0):int"/>

<var name="cast_example4" value="(4/2):float"/>

<var name=”cast_example5” value=”construct::stringvar::cast_example1” />

<var name=”cast_example6” value=”construct::intvar::cast_example2” />

Evaluating Variables

Like many programming languages and applications, Construct reads its input deck from top

to bottom, left to right. Variable names are read and stored before variable values.

Construct evaluates mathematical and logical expressions, as well as

casting between variable types, from right to left, though modelers can

make use of parentheses to specify a different evaluation ordering.

The example mathematical expressions below in Table 1 provides another mechanism to

allow this important point to be retained by modelers.

Table 1. Mechanism for evaluating variables in Construct.

Variable Declaration
Actual
Value

Expected
Value

Warning Non-Intuitive Explanation

<var name=”var1” value=”3/5.0+1” /> 0.5 1.6 X 5.0 + 1 happens first

<var name=”var2” value=”(3/5.0)+1” /> 1.6 1.6

<var name=”var3” value=”3-1-1” /> 3 1 X 1-1 happens first

<var name=”var4” value=”3-1+1” /> 1 3 X 1+1 happens first

<var name=”var5” value=”(3/5):float” /> 0 .6 X
Integer division

happens first

<var name=”var6” value=”(3/5.0)” /> 0.6 .6

<var name=”var7” value=”(3.0/5)” /> 0.6 “0.6” X

if either operand in

division is a float,

the result is a float

<var name=”var8” value=”(3/5.0):string” /> “0.6” “0.6”

<var name=”var9” value=”(3/5.0)”

with=”delay_interpolation/>
“3/5.0” “3/5.0”

See section on

Variables, Macros, and

with Statements

28

Variables, Macros, and With Statements

Construct supports the use of a macro language. With macros, users can automate the

creation and use of variables to make their simulation input decks more flexible – at the expense

of adding a level of complexity.

With dollar sign ($) delimited macro variables, a modeler can create a complex set of

variables for use. With the use of dollar sign macros, a modeler must also use a with attribute in

the var tag that declares the variable. Examples of macro use to declare and define variables are

below.

<construct_vars>

<var name=”letters” value=”x,y,z” />

<var name=”numbers” value=”2,3” />

<var name=”var_i” value=”i”

 with “i=construct::stringvar::numbers” />

<var name=”$letters$_$numbers$” value=”$letters$$numbers$”

 with “$letters$=construct::stringvar::letters,

 $numbers$=construct::stringvar::numbers”/>

<var name=”variable_1” value=”i” with i=1 />

<var name=”variable_2” value=”construct::intvar::variable_i”

 with i=1 />

<var name=”variable_I”

 value=”construct::intvar::variable_$I:int$ + 1”

 with “I=3” />

<var name=”variable_i” value=”i”

 with “i=construct::stringvar::letters” />

<var name=”variable_4” value=”j”

 with “i=3, j=construct::intvar::variable_i,verbose”/>

<var name="attacktime_list"

 value="construct::intvar::attack_start_time..construct::intvar::attack_

end_time" />

<var name="attacktime_output_list" value="

 $currTime$ = construct::intvar::attack_start_time - 1; /* start output

at timer period: attack-1 */

 $step$ = 1;

 $result$ = '' + $currTime$;

 foreach i (attacktime_list){

 if (i:int == ($currTime$ + $step$)){

 $result$ = $result$ + ',' + ($currTime$ + $step$);

 $currTime$ = i:int;

 } else {

 $currTime$ = $currTime$; /* non-harm else statement, since 'else'

 is not optional in Construct if then

 else statements */

 }

 }

29

 $result$ = $result$ + ',' + ($currTime$ + $step$); /*stop output at

attack + 1*/

 return $result$;"

 with="$result$" />

 <!-- with="$result$,verbose" /> --> <!-- verbose here forces lexer

 to dump to screen the processed

 results of the scripting-->

</construct_vars>

Table 2. Variables as evaluated.

Variable Name Value

Letters “x,y,z”

Numbers “2”

var_2

var_3

2

3

x_2

y_2

z_2

x_3

y_3

z_3

x2

y2

z2

x3

y3

z3

variable_1 1

variable_2 1

variable_3 4

variable_x

variable_y

variable_z

X

y

z

variable_4 4

Like non-macro variables, variables defined using macros must start with an alphabetic

character. A macro of i is lexicographically distinct from I. Additionally, no macro should

use a reserved word from the scripting language discussed in Appendix D. The declaration of a

macro is valid only within the var tag it is in. Attempting to reuse a macro, such as i in a new

var tag will create a new macro, not reuse the previous instance of i. Macros are expanded

before any further evaluation of the variable occurs. Modelers that attempt to use macros without

the with statement will receive a Construct error when parsing the input deck.

30

Construct macro variables are case sensitive.

The with attribute within a var tag can accept several pre-defined values as shown below.

• verbose - will print to the console standard out the evaluation of the parameter. Values

will reflect the value before the Construct initializes the parser, after the parser complete,

and after the evaluation is complete. It will also cause Construct to provide additional

error information if there is an error during parsing the input file.

• details - when the modeler uses this value inside the with attribute within a var tag in

conjunction with the verbose value, to allow the modeler to see the values of the macro

substitutions. It will also cause Construct to provide additional error information if there

is an error during parsing the input file.

• preserve_all_white_space - will cause Construct’s parser to retain all white space

(e.g., tabs, linefeeds, carriage returns, spaces) when evaluating the expression.

• preserve_spaces_only - will cause Construct’s parser to retain all spaces.

• delay_interpolation - will cause Construct to not evaluate the value of the variable

during its declaration and definition. Instead, Construct will evaluate the value of the

variable each time the simulation deck includes it in a

construct::expressionvar::[variable name].

Using Variables

 When introducing variables earlier we provide a few examples of uses of variables within a

Construct input deck. Below, we will discuss these uses more to provide examples of the ways

researchers within CASOS have used variables.

Variables as logical flags. One common use for variables is to create logical flags in the input

deck. An example of changing values to the variable time_count variable, which is dependent on

short_experiment, is below:

<var name="short_experiment" value="true"/>

<var name="time_count" value="if(construct::boolvar::short_experiment)

 {

 50

 } else {

 100

 }"/>

This is telling Construct to change time_count value to 50 if short_experiment is true,

otherwise set time_count to 100.

Another example could be to declare a debug variable that allows deck-wide enabling or

disabling of verbose output. Putting such a variable near the top of the deck supports making the

change quickly and easily.

31

<var name="debug_output" value="true"/>

Variables for important or key quantities. Another use is to specify values that control the

experiment. Examples of such values could be the number of agents, the number of knowledge

facts, the number of beliefs, as well as the size of other node classes. An example of changing

such a quantity, as a function of whether debug is enabled, is:

<var name="debug" value="true"/>

<var name=”agent_count”

value=”if (construct::boolvar::debug) {15} else {150}” />

<var name="num_groups" value="4"/>

Variables for defining bounds. Another example could be setting up the start and end values

for agents in adjacent groups, when creating groups of agents is important to the modeler’s

experimental design.

<var name="group_size" value="15"/>

<var name="group0_start" value="0"/>

<var name=”group0_end”

value=”construct::intval::group0_start + group_size - 1” />

<var name="group1_start" value=”construct::intval::group0_end + 1 />

<var name=”group1_end”

value=”construct::intval::group1_start + group_size - 1” />

Redefinitions of key values for logical clarity. A modeler may think about the average

degree, or the average number of connections, per agent. The various network generators require

an average density as a parameter. Both measures are related, so using a variable and a bit of

math, allows the modeler to use their concepts while meeting the input expectations of Construct.

Common Gotchas

In no order are lessons from the authors, both as modelers and as developers.

Construct’s parser will silently ignore any XML tags within the <construct_vars>

</construct_vars> pair that are not <var> tags.

Using an editor that can check for well-formed XML will generally save a modeler

significant amounts of time in avoiding Construct parser errors. Use of scripting support throws

most such editors for a loop, so we are still looking for viable ways others have used to help

reduce badly formed-XML errors.

ConstructML requires both the name and value attributes of a var

tag to be non-empty strings. Empty strings (e.g., “”) will cause

Construct’s parser to fail.

32

Networks within Construct represent connections between nodes of the various node classes

(e.g., agents, tasks, knowledge, time). Most networks have names that include spaces (e.g.,

“interaction sphere network”). If a modeler needs to store the name of a network in a

stringvar, the authors strongly recommend using the with=”preserve_spaces_only”

attribute when declaring the variable.

Parameters

Parameters are global values that control how construct operates and are used to modify the

experiment. All parameters should be set within the parameters tag of the input deck, and using

the following syntax:

<construct_parameters>

 <param name=“[name]” value=“[value]”>

</construct_parameters>

Parameter names are limited to those predefined by Construct, like the parameters listed

below, and the values for parameters must be valid depending on the type of parameter,

otherwise Construct will produce errors. The following are common parameters used in

Construct simulations.

Seed

Seed is a parameter used to control the random seed for the simulation. For a time dependent

seed, set this parameter value to 0, otherwise set it to an integer value to get a fixed sequence of

random values if the experiment is to be run multiple times.

<param name="seed" value="1"/>

The seed parameter must be the first parameter to ensure its

loading and use!

Verbose Initialization

Verbose initialization is used to determine values of every construct variable and every value

when defining nodes and networks. It is recommended to enable this parameter as true to aid in

debugging a simulation.

<param name="verbose_initialization" value="true"/>

Nodes

Nodes are the entities that Construct simulates. Nodes are grouped into groups of like nodes,

called node classes, and are related to each other using networks. This section describes some of

the nodes and node classes in Construct: specifically, the nodes and node classes in the demo

input deck.

33

The Construct simulation system uses the idea of “nodes” and “networks”, as opposed to the

more common formulation of “agents” in the agent-based modeling community. This is because

Construct grew out of the social and dynamic network analysis tradition (Carley, 1991; Carley &

Reminga, 2004) and PCANS framework (Krackhardt & Carley 1998). Groups of similar nodes

are grouped by node classes. Thus, all agent nodes are in the agent node class. Classes of nodes

can be associated with other classes of nodes to create networks. Links in these networks are

then manipulated when Construct is running. New links in the network can be added or

modified: for instance, if the agent learns knowledge, a new link between the specific agent node

and the relevant knowledge node can be created. Thus, as a Construct simulation runs, the

relationship among different nodes will be modified.

Node classes specify the node’s behavior in the simulation. For instance, agent nodes are the

nodes that interact and learn. While all agent nodes are alike in the sense that they are in the

same node class, each agent node can be associated with (have links to) different knowledge or

have different influentialness values. Agents in Construct are just one class of node. Another

example node class is the knowledge nodeclass. As with the agent node class, different nodes in

the knowledge node class are alike in the sense that they represent knowledge from the

simulation’s perspective but are different in the way that they represent different knowledge bits.

Other node classes include timeperiods, groups, and other entities.

The general XML code segment for declaring a node class in Construct is shown below.

Each nodeclass has a name element associated with it. This both gives the nodeset its identifier as

well as a root for the names of nodes where a name is not explicitly given (e.g., agent_1,

agent_2, agent_43). There are two methods to create nodes, individually or with a generator. In

either case, an individual node or generator may have required node attributes. Each individual

node may have unique values for attributes, however all nodes created using a single generator

gain all same attributes from that generator.

Below is an example for creating a nodeset.

<nodeclass name=”agent”>

 <generator type=”constant”>

 <count value=”20”/>

 <attribute name= “learning_rate” value= “0.5"/>

 <attribute name= “can_send_knowledge” value= “true”/>

 <attribute name= “can_receive_knowledge” value= “true”/>

 </generator>

 <node name= “Sam>

 <attribute name= “learning_rate” value= “0.75"/>

 <attribute name= “can_send_knowledge” value= “false”/>

 <attribute name= “can_receive_knowledge” value= “true”/>

 </node>

</nodeclass>

In this example, twenty-one agents are created with the agent at index 20 being named

“Sam”. The first twenty agents can send and receive knowledge, but have a low learning rate

34

compared to Sam. In this way, many nodes can be created without having to individually specify

each node’s attributes.

Agent Node Class

The agent node class represents the actors in the simulation. Agents interact with each other,

exchange messages that contain information, and make decisions based on interaction. This

nodeclass is universal among all of Construct’s standard models and used in many models.

The second method will read the agents in from a DyNetML file. All the property tags are

necessary for proper use and parsing of the input file. In the example shown, the input file is in

the same working directory as the construct.exe executable, and there is no path information

preceding the file name.

<nodeclass type="agent" id="agent">

 <generator type=”dynetml”>

 <attribute name=”file_name” value=”path_to_file.xml”/>

 </generator>

</nodeclass>

If the generator_doc_path is absolute and not relative, quote the

entire path with single quotes (‘) to force Construct to treat the value as

a long string and prevent the Construct lexer from failing with less than

transparent errors. The colon and back slashes in Windows paths will

simply cause the lexer to believe it is parsing a Construct script instead

of a long string. In Unix environments, the slash will equally cause the

lexer to believe it is processing a math operator.

Agentgroup Node Class

The agentgroup nodeclass represents a collection of agents.

CommunicationMedium Node Class

Just like light or sound, communication requires a medium, and different mediums have

different properties which effect the entity that moves through it.

<nodeclass name=”CommunicationMedium”>

 <node name= “face_to_face”>

 <attribute name="maxMsgComplexity" value="10"/>

 <attribute name="maximumPercentLearnable" value="1"/>

 <attribute name="time_to_send" value="0"/>

 </node>

 <node name= “email”>

 <attribute name="maxMsgComplexity" value="2"/>

 <attribute name="maximumPercentLearnable" value="1"/>

 <attribute name="time_to_send" value="1"/>

 </node>

35

</nodeclass>

Here we have an example of two mediums. In face-to-face interactions, information transfer

typically takes little time and conversations are usually very rich with information beyond

written words. The attributes above quantify these characteristics.

1. “maxMsgComplexity” gives an upper limit on the information content of a message. In

practice, this means that when the number of items attached to a message is larger than

the “maxMsgComplexity”, items are removed randomly until the number returns to the

upper bound. Additionally, adding an item after a message has been created will cause

the message to randomly remove an existing item to make room for the new item.

2. “maximumPercentLearnable” sets an upper bound on the link strength between an

agent and knowledge node in the knowledge network. The stronger that link strength, the

more difficult it is to be broken in models like the Forget model.

3. “time_to_send” dictates how many time periods a message must wait before being

delivered.

This class can also be read in from a DyNetML file, presuming the modeler has the

appropriate attributes just discussed. An example of a code snippet that would read the

CommunicationMedium in is below.

<nodeclass name="CommunicationMedium">

 <generator type=”dynetml”>

 <attribute name=”file_name” value=”path_to_file.xml”/>

 </generator>

</nodeclass>

Dummy Node Class

The dummy node class is designed to act as a placeholder node class to create column

vectors for other node classes. One of the principal ways Construct works is by manipulating two

dimensional networks, and with the dummy node class, one can create an agent by dummy node

class network that acts as a one-dimensional network. This essentially makes visualization of

networks much easier, as well as data manipulation.

<nodeclass name="dummy_nodeclass">

 <node name=”dummy_node”/>

</nodeclass>

Most networks used by Construct avoids this implementation in favor of using node

attributes. As an example, one could create a Boolean network connecting agents to the dummy

node class to represent whether that agent can send communication. Most models instead attach

that information to a node as a node attribute.

36

Knowledge Node Class

The knowledge node class represents knowledge that can be exchanged between agents.

Each knowledge bit is represented by one node. In this example, ten knowledge nodes are

created.

<nodeclass name="knowledge">

 <generator type=”constant”>

 <count value="10"/>

 </generator>

</nodeclass>

Time Period Node Class

Nodes in the time period node class represent one simulated time period in the simulation.

The length of the simulation is represented by the number of nodes in this node class. While all

of Construct’s standard models require other nodesets such as agent or knowledge, Construct

inherently requires this node class as the only hard requirement in the Construct architecture.

<nodeclass name="timeperiod">

 <generator type=”constant”>

 <count value="10"/>

 </generator>

</nodeclass>

Other Node Classes

While the node classes listed above are standard node classes in construct models, Construct

is not limited to these node classes. In the future, new models may be available that require new

nodeclasses.

Networks

Networks are the main data structures in Construct. Since construct is a network-based

simulation, most of the data that goes into input for simulation are in the form of network.

Networks are the relationships between node classes listed in the section above. The algorithms

in Construct reference these networks to perform tasks. For example, the agent by knowledge,

knowledge network represents which knowledge is known by which agents.

Table 3 shows specific networks with their relationship to node class as well as a brief

description.

Table 3. Network relations to node classes.

Network Name
Source and Target

Node Classes
Function or Purpose in Demo

Input Deck

access agent x agent which agents have access to each other

(supplement to interaction sphere)

37

Network Name
Source and Target

Node Classes
Function or Purpose in Demo

Input Deck

agent active timeperiod agent x timeperiod which agents are active during which

timeperiods

agent group membership agent x agentgroup which agents are associated with which agent

groups

agent initiation count agent x timeperiod number of times agent can seek a partner,

actively initiating communication

agent mail usage by medium agent x

CommunicationMedium

how likely it is that an agent will send a via

mail message using a given medium

agent reception count agent x timeperiod number of times agent can be sought out,

passively receiving communication

communication medium access agent x

CommunicationMedium

which agents can send messages on a given

medium

communication medium

preferences

agent x

CommunicationMedium

how likely an agent is to send a message over

a medium

communication medium

preferences 3d

agent x agent x

CommunicationMedium

how likely the ego is to send a message over a

medium to a given alter

interaction knowledge weight agent x knowledge weight placed on knowledge-based factors

when selecting interaction partners

interaction agent x agent record of interactions between agents

interaction probability agent x agent record of probabilities for agents to pick each

other for interactions

interaction sphere agent x agent which agents can potentially interact with

another

knowledge agent x knowledge the knowledge associated with an agent, i.e.,

what an agent currently knows

knowledge expertise weight agent x timeperiod weight placed on interacting with alter agents

with knowledge the ego agent lacks

knowledge forgetting prob agent x knowledge the probability that a piece of knowledge not

being used will incrementally be forgotten

knowledge forgetting rate agent x knowledge the rate at which a piece of knowledge is

forgotten

knowledge group membership knowledge x

knowledgegroup

what knowledge bits are associated with which

knowledge groups

knowledge learning difficulty agent x knowledge probability that an agent is unable to learn a

piece of knowledge

38

Network Name
Source and Target

Node Classes
Function or Purpose in Demo

Input Deck

knowledge message complexity agent x timeperiod amount of info an agent can send when

communicating

knowledge priority agent x knowledge priorities placed on knowledge bits when

sending a message

knowledge opinion agent x knowledge an agent’s opinion on whether a piece of

knowledge is true

knowledge similarity weight agent x timeperiod weight placed on shared knowledge when

choosing interaction partner

learnable knowledge agent x knowledge which knowledge an agent can learn

medium knowledge CommunicationMedium x

knowledge

determines which knowledge can be sent over

a CommunicationMedium

physical proximity agent x agent how close each pair of agents are physically

physical proximity weight agent x timeperiod weight placed on physical proximity when

choosing interaction partner

public propensity agent x timeperiod how likely an agent is to make a message

public

social proximity agent x agent how close each pair of agents are socially

social proximity weight agent x timeperiod weight placed on social proximity when

choosing interaction partner

sociodemographic proximity agent x agent how close each pair of agents are socio-

demographically

sociodemographic proximity

weight

agent x timeperiod weight placed on sociodemographic proximity

when choosing interaction partner

subscription agent x agent which ego agents will receive a forwarded

message from an alter agent if that message is

made public

subscription probability agent x agent how likely an ego agent is to subscribe to an

alter agent message when the alter makes their

message public

It is quite possible for a user to create more networks than there are listed in Table 3.

Networks are specified within the <networks> ConstructML tag.

<networks>

 <!-- Put all networks here -->

</networks>

39

Each networks tag must have five attributes: network id, source nodeclass, target nodeclass,

link type, and network type.

<network src_nodeclass_type="[nodeclass]"

 target_nodeclass_type="[nodeclass]"

 id="[name]" link_type="[type]" network_type="dense">

 <!-- Set links and generators here -->

</network>

Network ID is the name that refers to a given network. Network ID’s are unique, and

attempting to include multiple networks will result in warnings that degenerate networks are

being dumped. The source node class type and target node class type indicate the node classes

that are related by the network. Relationships between networks are weighted and unweighted

relations between node classes. Network type specifies the storage mechanism used to represent

the network. The link type defines the type of relation stored in the network. There are Boolean

link types, integer link types, floating number link types, and string link types. The link type

must be the same for all links in the network i.e., it is not possible to have a Boolean relationship

in integer networks. Links can be specified either through the <link> tag or the <generator>

tag.

The syntax for link generation is listed below:

<link src_node_name="[id]" target_node_name="[id]" value="[value]"/>

The following sections are more detailed descriptions of the networks listed above in Table

3. The ID Construct uses to identify the network is listed in quotations in each network

description as well as in the example for each network.

Access Network

The “access network” is an addition to the interaction sphere and can restrict which

alters agents the ego agent can communicate with. If the entry for a row agent and column agent

is zero then that row agent can not initiate interactions with the column agent, but the column

agent can initiate interactions with the row agent if the symmetric entry is nonzero. A use case

for this network could include the temporary restriction of communication by an agent by

making its row elements all zero or false. This is an optional network in the Standard Interaction

model.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"

id="access network" link_type="bool" network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::agent::count-1"/>

 <param name="constant_value" value="true"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

40

Agent Active Timeperiod Network

The ”agent active time period network” determines which agents are active

during each time period. Active agents during a time period can interact and exchange messages.

This is an optional network in the Standard Interaction model and Twitter Interaction model.

<network src_nodeclass_type="agent" target_node class_type="timeperiod"

id="agent active timeperiod network” link_type="bool"

network_type="dense">

 <generator type="constant">

 <rows first="construct::intvar::agentgroup_A_start"

 last="construct::intvar::agentgroup_A_end"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value" value="1"/>

 </generator>

 <generator type="constant">

 <rows first="construct::intvar::agentgroup_B_start"

 last="construct::intvar::agentgroup_B_end"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value" value="1"/>

 </generator>

 <generator type="constant">

 <rows first="construct::intvar::agentgroup_C_start"

 last="construct::intvar::agentgroup_C_end"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value"

 value="construct::boolvar::bridging_agents_active"/>

 </generator>

</network>

Agent Group Membership Network

The “agent group membership network” is used to identify related sets of agents.

<network src_nodeclass_type="agent" target_node class_type="agentgroup"

id="agent group membership network" link_type="bool" network_type="dense">

 <generator type="constant">

 <rows first="construct::intvar::agentgroup_A_start"

 last="construct::intvar::agentgroup_A_end"/>

 <cols first="0" last="0"/>

 <param name="constant_value" value="1"/>

 </generator>

 <generator type="constant">

 <rows first="construct::intvar::agentgroup_B_start"

 last="construct::intvar::agentgroup_B_end"/>

 <cols first="1" last="1"/>

 <param name="constant_value" value="1"/>

 </generator>

 <generator type="constant">

 <rows first="construct::intvar::agentgroup_C_start"

 last="construct::intvar::agentgroup_C_end"/>

 <cols first="2" last="2"/>

 <param name="constant_value" value="1"/>

 </generator>

</network>

41

Agent Initiation Count Network

The “agent initiation count network” specifies the number of times each agent

can initiate an interaction with another agent each time period. If an agent cannot find another

agent to initiate on, the agent is forced to interact with self. This is an optional network in the

Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"

id="agent initiation count network" link_type="int" network_type="dense">

 <generator type="constant">

 <rows first="construct::intvar::agentgroup_A_start"

 last="construct::intvar::agentgroup_A_end"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value" value="1"/>

 </generator>

 <generator type="constant">

 <rows first="construct::intvar::agentgroup_B_start"

 last="construct::intvar::agentgroup_B_end"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value" value="1"/>

 </generator>

 <generator type="constant">

 <rows first="construct::intvar::agentgroup_C_start"

 last="construct::intvar::agentgroup_C_end"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value" value="1"/>

 </generator>

</network>

Agent Mail Usage by Medium Network

The “agent mail usage by medium network” indicates the probability that an agent

will use a mailing system for a particular medium. This is an optional network for the Mail

model.

<network src_nodeclass_type="agent"

target_nodeclass_type="CommunicationMedium" id="agent mail usage by medium

network" link_type="float" network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::CommunicationMedium::count_minus_one "/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Agent Reception Count Network

The “agent reception count network” specifies the number of times each agent can

be initiated on by another agent for interactions each time period. The number of times an agent

42

is initiated on does not need to be equal to its reception count, and can in fact, be lower under the

correct conditions. This is an optional network in the Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"

id="agent reception count network" link_type="int" network_type="dense">

 <generator type="constant">

 <rows first="construct::intvar::agentgroup_A_start"

 last="construct::intvar::agentgroup_A_end"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value" value="1"/>

 </generator>

 <generator type="constant">

 <rows first="construct::intvar::agentgroup_B_start"

 last="construct::intvar::agentgroup_B_end"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value" value="1"/>

 </generator>

 <generator type="constant">

 <rows first="construct::intvar::agentgroup_C_start"

 last="construct::intvar::agentgroup_C_end"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value" value="1"/>

 </generator>

</network>

Communication Medium Access Network

The “communication medium access network” determines which agents have access

to which communication mediums. Set the value to zero (0) for the agent to prevent access to the

specified medium.

<network src_nodeclass_type="agent"

target_nodeclass_type="CommunicationMedium" id="communication medium

access network" link_type="float" network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

 last="nodeclass::CommunicationMedium::count_minus_one"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Communication Medium Preferences Network

The “communication medium preference network” specifies an agent’s preferences

for mediums regardless of who they are interacting with, i.e., if someone prefers, across the

board, to use face-to-face rather than email, you would indicate that preference with this

network. Link values correspond to probability weights for an agent to use the corresponding

medium when constructing a message. A 3D version of this graph exists which is mutually

exclusive to this graph. While that graph gives greater control, it also introduces additional

complexity.

43

<network src_nodeclass_type="agent"

target_nodeclass_type="CommunicationMedium" id="communication medium

preferences network" link_type="float" network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::CommunicationMedium::count_minus_one"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Communication Medium Preferences Network 3d

The “communication medium preferences network 3d” is a network represented by a matrix

with three dimensions. In this case, each ego agent has a two dimensional network that

represents their preference for sending messages on a specific medium to a specific alter agent.

<network src_nodeclass_type="agent" inner_nodeclass_type="agent"

target_nodeclass_type="CommunicationMedium" id="communication medium

preferences network 3d" link_type="float" network_type="dense3d">

 <generator type="constant3d">

 <rows first="1" last="nodeclass::agent::count_minus_one"/>

 <inners first="0" last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

 last="nodeclass::CommunicationMedium::count_minus_one"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Interaction Knowledge Weight Network

The “interaction knowledge weight network” specifies how much weight agents

will put on particular knowledge bits when computing knowledge similarity and expertise. This

is an optional network in the Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="knowledge"

id="interaction knowledge weight network" link_type="float"

network_type="dense">

 <generator type="randomuniform">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::knowledge::count-1"/>

 <param name="min" value="1.0"/>

 <param name="max" value="1.0"/>

 </generator>

</network>

Interaction Network

The “interaction network” is used by the Standard Interaction model; however, this

graph is reset at the beginning of each time period. This entity is a network so that it may easily

44

be output. One does not need to include the interaction network in the input deck in order for it to

be used as output.

Interaction Probability Network

Like the above interaction network, the “interaction probability network” is used

by the Standard Interaction model and is reset each time period. Like the interaction network,

input for this network is not used and this network is not required in the input deck. It can

however be output for analysis.

Interaction Sphere Network

The “interaction sphere network” is the starting point for the modeler to enumerate

which agents have an interaction link to other agents.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"

id="interaction sphere network" link_type="bool" network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count_minus_one"/>

 <cols first="0" last="nodeclass::agent::count_minus_one"/>

 <param name="constant_value" value="1.0"/>

 <param name="symmetric_flag" value="true"/>

 </generator>

</network>

Knowledge Expertise Weight Network

The “knowledge expertise network” specifies how much weight is placed on

knowledge expertise when calculating probability weights. This is an optional network in the

Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"

id="knowledge expertise weight network" link_type="float"

network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value" value="1.0"/>

 <param name="symmetric_flag" value="true"/>

 </generator>

</network>

Knowledge Forgetting Prob Network

The “knowledge forgetting prob network” specifies the likelihood that an agent

forgets knowledge that they learned. When previous conditions are met, the relevant link

corresponds to the probability that an agent will forget some or all of a piece of knowledge. This

is an optional network in the Forgetting model.

<network src_nodeclass_type="agent" target_node class_type="knowledge"

id="knowledge forgetting prob network" link_type="float"

network_type="dense">

45

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::knowledge::count-1"/>

 <param name="constant_value" value="0.5"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Knowledge Forgetting Rate Network

The “knowledge forgetting rate network” specifies how quickly agents forget

knowledge that they learned. When all necessary conditions are met, the relevant link weight is

used to decrease the corresponding link in the “knowledge network”. This is an optional network

in the Forgetting model.

<network src_nodeclass_type="agent" target_node class_type="knowledge"

id="knowledge forgetting rate network" link_type="float"

network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::knowledge::count-1"/>

 <param name="constant_value" value="0.25"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Knowledge Group Membership Network

The “knowledge group membership network” is used to identify related sets of

knowledge bits.

<network src_nodeclass_type="knowledge" target_node

class_type="knowledgegroup" id="knowledge group membership network"

link_type="bool" network_type="dense">

 <generator type="constant">

 <rows first="construct::intvar::knowledgegroup_K1_start"

 last="construct::intvar::knowledgegroup_K1_end"/>

 <cols first="0" last="0"/>

 <param name="constant_value" value="1"/>

 </generator>

 <generator type="constant">

 <rows first="construct::intvar::knowledgegroup_K2_start"

 last="construct::intvar::knowledgegroup_K2_end"/>

 <cols first="1" last="1"/>

 <param name="constant_value" value="1"/>

 </generator>

</network>

46

Knowledge Learning Difficulty Network

The “knowledge learning difficulty network” gives the probability that a

receiving agent cannot learn a piece of knowledge. This is a required network for the Knowledge

Learning Difficulty model.

<network src_nodeclass_type="agent" target_nodeclass_type="knowledge"

id="knowledge learning difficulty network" link_type="float"

network_type="dense">

 <generator type="randomuniform">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::knowledge::count-1"/>

 <param name="min" value="1.0"/>

 <param name="max" value="1.0"/>

 </generator>

</network>

Knowledge Message Complexity Network

The “knowledge message complexity network” specifies how many items that

communicate knowledge an agent will attempt to add to a message each time period. This is an

optional network in the Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"

id="knowledge message complexity network" link_type="int"

network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value" value="1"/>

 </generator>

</network>

Knowledge Network

The “knowledge network” specifies which agents have what knowledge. Knowledge is

ubiquitous in all of Construct’s library of interaction models. This network is a required network

for various models.

<network src_nodeclass_type="agent" target_nodeclass_type="knowledge"

id="knowledge network" link_type="float" network_type="dense">

 <generator type="randombinary">

 <rows first="construct::intvar::agentgroup_A_start"

 last="construct::intvar::agentgroup_A_end"/>

 <cols first="construct::intvar::knowledgegroup_K1_start"

 last="construct::intvar::knowledgegroup_K1_end"/>

 <param name="mean" value="0.20"/>

 </generator>

 <generator type="randombinary">

 <rows first="construct::intvar::agentgroup_B_start"

 last="construct::intvar::agentgroup_B_end"/>

 <cols first="construct::intvar::knowledgegroup_K2_start"

 last="construct::intvar::knowledgegroup_K2_end"/>

 <param name="mean" value="0.20"/>

47

 </generator>

 <generator type="randombinary">

 <rows first="construct::intvar::agentgroup_C_start"

 last="construct::intvar::agentgroup_C_end"/>

 <cols first="construct::intvar::knowledgegroup_K1_start"

 last="construct::intvar::knowledgegroup_K1_end"/>

 <param name="mean" value="0.10"/>

 </generator>

 <generator type="randombinary">

 <rows first="construct::intvar::agentgroup_C_start"

 last="construct::intvar::agentgroup_C_end"/>

 <cols first="construct::intvar::knowledgegroup_K2_start"

 last="construct::intvar::knowledgegroup_K2_end"/>

 <param name="mean" value="0.10"/>

 </generator>

</network>

Knowledge Priority Network

The “knowledge priority network” specifies the priority level of a particular piece of

knowledge when building a message. In this network, links correspond to probability weights

which when normalized creates a cumulative distribution function from which the knowledge

selection process draws. This is optional network for the Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="knowledge"

id="knowledge priority network" link_type="int" network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::knowledge::count-1"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Knowledge Opinion Network

The “knowledge opinion network” links indicate how strongly an agent believes that a

piece of knowledge is true. This is an optional network for the Twitter Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="knowledge" id="

knowledge opinion network" link_type="float" network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::knowledge::count-1"/>

 <param name="constant_value" value="0.5"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Knowledge Similarity Weight Network

The “knowledge similarity weight network” specifies how much weight agents

place on shared knowledge when calculating probabilities of interaction. It is measured by

48

comparing an agent’s knowledge against its perception of another agent’s knowledge.

Knowledge similarity is increased when the ego knows a knowledge bit and perceives that an

alter also knows the same knowledge bit. The increase will be equal to the agent’s knowledge of

the bit.

<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"

id="knowledge similarity weight network" link_type="float"

network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::knowledge::count-1"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Learnable Knowledge Network

The “learnable knowledge network” links indicate whether an agent can learn a piece

of knowledge. An experimenter may want to restrict which groups of agents are capable of

learning knowledge bits and can do so using this network. This is an optional network for the

Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="knowledge"

id="learnable knowledge network" link_type="bool" network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::knowledge::count-1"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Medium Knowledge Network

The “medium knowledge network” limits what knowledge can be sent on a given

medium. This is an optional network for the Standard Interaction model.

<network src_nodeclass_type="CommunicationMedium"

target_nodeclass_type="knowledge" id="medium knowledge network"

link_type="bool" network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::CommunicationMedium::count-1"/>

 <cols first="0" last="nodeclass::knowledge::count-1"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Physical Proximity Network

The “physical proximity network” specifies how close two agents are to each other

physically. Physical proximity is one of three factors that determines the proximity of two

49

agents. A higher proximity indicates an increased probability to interact. This is an optional

network in the Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"

id="physical proximity network" link_type="float" network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::agent::count-1"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Physical Proximity Weight Network

The “physical proximity weight network” specifies how strongly agents will value

physical proximity when determining overall proximity with another agent. Setting a value to

zero will cause an agent to determine overall proximity independent of physical proximity. This

is an optional network in the Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"

id="physical proximity weight network" link_type="float"

network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Public Propensity Network

The “public propensity network” indicates the probability that an agent will make

their message public. When a message is made public, other agents have the opportunity to

subscribe to the sending agent, and that message is then forwarded to any current subscribers.

This is an optional network for the Subscription model.

<network src_nodeclass_type="agent"

target_nodeclass_type="CommunicationMedium" id="public propensity network"

link_type="float" network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::CommunicationMedium::count_minus_one "/>

 <param name="constant_value" value="0.1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

50

Social Proximity Network

The “social proximity network” specifies how close two agents are to each other

socially. Social proximity is one of three factors that determines the proximity of two agents. A

higher proximity indicates an increased probability to interact. This is an optional network in the

Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"

id="social proximity network" link_type="float" network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::agent::count-1"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Social Proximity Weight Network

The “social proximity weight network” specifies how strongly agents will value

social proximity when determining overall proximity with another agent. Setting a value to zero

will cause an agent to determine overall proximity independent of social proximity. This is an

optional network in the Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"

id="social proximity weight network" link_type="float"

network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Sociodemographic Proximity Network

The “sociodemographic proximity network” specifies how close two agents are to

each other demographically. Sociodemographic proximity is one of three factors that determines

the proximity of two agents. A higher proximity indicates an increased probability to interact.

This is an optional network in the Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"

id="sociodemographic proximity network" link_type="float"

network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::agent::count-1"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

51

Sociodemographic Proximity Weight Network

The “sociodemographic proximity weight network” specifies how strongly

agents will value sociodemographic proximity when determining overall proximity with another

agent. Setting a value to zero will cause an agent to determine overall proximity independent of

sociodemographic proximity. This is an optional network in the Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="timeperiod"

id="sociodemographic proximity weight network" link_type="float"

network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::timeperiod::count-1"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Subscription Network

The “subscription network” indicates whether each row agent is subscribed to a

column agent. When a message is made public, an agent may subscribe to the sender and all

agents subscribed to the sender are forwarded a copy of the message. This is an optional network

in the Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"

id="subscription network" link_type="bool" network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::agent::count-1"/>

 <param name="constant_value" value="false"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

Subscription Probability Network

The “subscription probability network” indicates the probability each row agent

will subscribe to a column agent when the column agent makes a message they make public.

This is an optional network in the Standard Interaction model.

<network src_nodeclass_type="agent" target_nodeclass_type="agent"

id="subscription probability network" link_type="float"

network_type="dense">

 <generator type="constant">

 <rows first="0" last="nodeclass::agent::count-1"/>

 <cols first="0" last="nodeclass::agent::count-1"/>

 <param name="constant_value" value="0.1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

</network>

52

Network Generators

To use a generator to specify links, use the following syntax:

<generator type="[type]">

 <!—

 additional attribute for rows, inners, and cols can be values="",

 where values is a comma separated list

 additional attribute for rows, inners, and cols can be groups="",

 where groups is a comma separated list

 additional attribute for rows, inners, and cols

 group_membership_network="", where group_membership_network is

 a string that names the group membership network for this

 row/col/inner

 -->

 <rows first="[firstrow]" last="[lastrow]"/>

 <cols first="[firstcol]" last="[lastcol]"/>

 <param name="[name1]" value="[value1]"/>

 <param name="[name2]" value="[value2]"/>

 ...

</generator>

Table 4 summarizes each of the network generators available to an experiment designer.

Below Table 4 is a detailed example and description of how to use and invoke each generator.

Table 4. Types of network generators available.

Type What does it do?
constant Used to create a 2D matrix with a constant value in all cells of the network.

constant3d Used to create a 3D matrix with a constant value in all cells of the matrix.

csv Import from a comma separated value file. If the load_style parameter is

present, Construct only understands the value sparse_to_dense_convert

and will treat any other values as if it needed to load a dense network. With this

parameter, construct will load a sparse network, where only the cells with values

are represented in the csv file.

csv_binarize Import from a comma separated value file, but dichotomize the values imported

based on the specified cut-off. All values less than or equal to the cut off are

converted to zero (0) and all values greater than cut off are converted to one (1).

csv3d Import a 3D network for use initializing Transactive Memory from a comma

separated value file.

do_nothing Useful for debugging an input file. To disable a generator, one must comment it

out, delete it or change its type to do_nothing. For large generators with many

lines of XML it can be more convenient to change the type to do_nothing than

finding the beginning and end of the XML code to comment it out.

gen_from_text Retrieve generator parameters from text file instead of from within XML of the

input file.

group_to_group Store generator parameters in one network and use them in generating a different

network.

erdos_renyi Generate network with values generated using the Erdos Renyi distribution model.

multi_dimensional_preprocess

_based

Use a collection of networks to create a probability distribution function for agents

being associated with any value found in the networks. From this, values are

chosen for each agent.

periodic Set cells to a constant value based on given period.

preprocessor_based Use a given network to find probabilities that an agent will have one of the values

found in the network, then use these probabilities to generate cell values.

53

randombinary Given a mean, generate a sequence of 0,1 with the approximate number of 1’s

defined by the mean.

randomuniform Given a max and min value, generate a sequence of values between the two in a

uniform distribution

randomvalue Given a list of possible values and their weights, one is chosen for each cell.

sociodemographic_similarity Generate a network where links are created if the sociodemographic similarity

between the source and target node is within a minimum and maximum bound.

tied Set values equal to the corresponding values in a different part of the network.

xml_generator_loader Load a generator from a separate XML file.

Constant Network Generator

Used to create a 2D matrix with a constant value in all cells of the network.

<generator type="constant">

 <!-- additional attribute for rows, inners, and cols can be values="",

where values is a comma separated list

 additional attribute for rows, inners, and cols can be groups="",

where groups is a comma separated list

 additional attribute for rows, inners, and cols

group_membership_network="", where group_membership_network is a string

that names the group membership network for this row/col/inner

 -->

 <rows first="0" last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::CommunicationMedium::count_minus_one"/>

 <param name="constant_value" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

</generator>

Constant3D Network Generator

Used to create a 3D matrix with a constant value in all cells of the matrix.

<generator type="constant3d">

 <!-- additional attribute for rows, inners, and cols can be values="",

where values is a comma separated list

 additional attribute for rows, inners, and cols can be groups="",

where groups is a comma separated list

 additional attribute for rows, inners, and cols

group_membership_network="", where group_membership_network is a string

that names the group membership network for this row/col/inner

 -->

 <rows first="1" last="nodeclass::agent::count_minus_one"/>

 <inners first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0"

last="nodeclass::CommunicationMedium::count_minus_one"/>

 <param name="constant_value" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

</generator>

CSV Network Generator

Import from a comma separated value (CSV) file. If the load_style parameter is used,

Construct only understands the value sparse_to_dense_convert and will treat any other values

54

as if it needed to load a dense network. With this parameter, Construct will load a sparse

network, where only the cells with values are represented in the csv file.

<generator type="csv">

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::timeperiod::count_minus_one" />

 <param name="filesystem_path"

 value="agent_initiation_count_network_fname" />

 <param name="csvrow" value="construct::stringvar::agent_list" />

 <param name="csvcol" value="construct::stringvar::timeperiod_list" />

 <!-- optional parameters that default to false -->

 <param name="load_style" value="sparse_to_dense_convert" />

 <param name="skip_first_row" value="true" />

 <param name="subtract_one_from_indices" value="true" /> -->

</generator>

CSV_binarize Network Generator

Import from a comma separated value (CSV) file, but dichotomize the values imported based

on the specified cut-off. All values less than or equal to the cut off are converted to zero (0) and

all values greater than cut off are converted to one (1).

<generator type="csv_binarize">

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::agent::count_minus_one" />

 <param name="filesystem_path"

 value="interaction_sphere_network_fname" />

 <param name="csvrow" value="construct::stringvar::agent_list" />

 <param name="csvcol" value="construct::stringvar::agent_list" />

 <param name="symmetric" value="true" />

 <param name="binarization_threshold" value="0.0" />

 <!-- optional parameters that default to false -->

 <param name="skip_first_row" value="true" />

 <param name="load_style" value="sparse_to_dense_convert" />

 <param name="subtract_one_from_indices" value="true" />

</generator>

Csv3d Network Generator

Import a 3D network for use initializing transactive memory from a comma separated value

(CSV) file.

<generator type="dynetml">

 <param name="filesystem_path" value="my_file.xml" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <inner first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::knowledge::count_minus_one" />

</generator>

Gen_from_text Network Generator

Retrieve generator parameters from text file instead of from within XML of the input file.

<generator type="gen_from_text">

55

 <param name="filename" value="my_file.txt" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::knowledge::count_minus_one" />

</generator>

Group_to_group Network Generator

Store generator parameters in one network and use them in generating a different network.

<generator type="group_to_group">

 <param name="row_grp_membership_net" value="agent membership network"/>

 <param name="col_grp_membership_net" value="knowledge membership

network"/>

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::knowledge::count_minus_one" />

</generator>

Erdos_renyi Network Generator

Generate network with values generated using the Erdos Renyi distribution model.

<generator type="erdos_renyi">

 <param name="density" value="0.3" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::knowledge::count_minus_one" />

</generator>

Multi_dimensional_preprocess_based Network Generator

Use a collection of networks to create a probability distribution function for agents being

associated with any value found in the networks. From this, values are chosen for each agent.

<generator type=”multi_dimensional_preprocess_based">

 <param name="mechanism_names" value=”age,race,gender,occupation" />

 <param name="filesystem_path" value=”my_probability_file.csv" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::knowledge::count_minus_one" />

</generator>

Periodic Network Generator

Set cells to a constant value based on given period.

<generator type=”periodic">

 <param name="constant_value" value=”10" />

 <param name="period" value=”2" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::knowledge::count_minus_one" />

</generator>

Perception_based Network Generator

56

Generate knowledge transactive memory based on an agent’s sphere of interaction, false

positive rate, and false negative rate.

<generator type=”perception_based">

 <param name="false_negative_rate" value=”0.1" />

 <param name="false_positive_rate" value=”0.1" />

 <param name="rounding_threshold" value=”0.1" />

 <param name="perceived_network" value=”knowledge network" />

 <ego first="0" last="nodeclass::agent::count_minus_one" />

 <alter first="0" last="nodeclass::agent::count_minus_one" />

 <transactive first="0" last="nodeclass::knowledge::count_minus_one" />

</generator>

Preprocessor_based Network Generator

Use a given network to find probabilities that an agent will have one of the values found in

the network, then use these probabilities to generate call values.

<generator type=”preprocessor_based">

 <param name="mechanism_names" value=”age" />

 <param name="filesystem_path" value=”my_probability_file.csv" />

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::knowledge::count_minus_one" />

</generator>

Randombinary Network Generator

Given a mean, generate a sequence of 0,1 with the approximate number of 1’s defined by the

mean.

<generator type="randombinary">

<rows groups="agent_grp1,agent_grp2" group_membership_network="'agent

group membership network'"/>

<cols groups="agent_grp3" group_membership_network="'agent group

membership network'"/>

 <param name="mean" value="0.7" />

</generator>

Randomuniform Network Generator

The randomuniform network generator uses a random uniform distribution with “min” and

“max” as the lower and upper bounds of the distribution.

<generator type="randomnuniform">

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::timeperiod::count_minus_one" />

 <param name=”min” value=”0”/>

 <param name=”max” value=”1”/>

</generator>

Randomvalue Network Generator

Given a list of possible values and their weights, one is chosen for each cell.

<generator type="randomvalue">

57

 <param name="values" value="1,2,3,4,5" />

 <param name="weights" value="0.1,0.2,0.4,0.5 " />

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::timeperiod::count_minus_one" />

</generator>

Sociodemographic Similarity Network Generator

Generate a network where links are created if the sociodemographic similarity between the

source and target node is within a minimum and maximum bound.

<generator type="sociodemographic_similarity ">

 <param name="minsimilarity" value="0.1”/>

 <param name="maxsimilarity " value="0.6”/>

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::timeperiod::count_minus_one"/>

</generator>

Tied Network Generator

Set values equal to the corresponding values in a different part of the network.

<generator type="tied">

 <param name="tiedrow" value="1”/>

 <param name="tiedcol" value="6”/>

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::timeperiod::count_minus_one"/>

</generator>

Xml_generator_loader Network Generator

Load a generator from a separate XML file.

<generator type="xmlloader">

 <param name="fileystem_path" value="my_xml_file.xml”/>

 <rows first="0" last="nodeclass::agent::count_minus_one" />

 <cols first="0" last="nodeclass::timeperiod::count_minus_one"/>

</generator>

Interaction Models

Interaction Models are the backbone of Construct models as other types of models rely on

modifying the messages created by interaction models. Many of the interaction models utilize

both static and dynamic networks to decide how individuals choose interaction partners and what

information to transmit. Currently three interaction models are available for use, the Standard

Interaction Model, the Knowledge Transactive Memory Interaction Model, and the Twitter

Interaction Model. Only the Standard Interaction Model and Knowledge Transactive Memory

Interaction Model are mutually exclusive. The ID for each model is listed in quotations at the

beginning of the description followed by an example of its use and each model can only be

called once.

58

Standard Interaction Model

The “Standard Interaction Model” is the most basic model in Construct. Below is an

example for the input XML deck. Note this model has no model specific parameters.

<model name="Standard Interaction Model"/>

The model assigns interaction pairs based on perfectly known homophily, expertise, proximity,

and interaction access. Agents simultaneously seek other agents that have similar knowledge to

themselves while also seeking agents that know knowledge that the interaction seeker does not.

Interaction pair formation is further impacted by how proximal agents are to another either by

physical distance, social status, or demographic state. Finally, certain agents may not be able to

interact with another if the agent is unaware that an agent exists or if there is no medium with

which communication can occur. First, we will discuss probability weights that determines who

an agent attempts to interact with. Then we will discuss how messages are formed and the result

of an empty message. Finally, we will discuss message parsing and what happens when the

message is received.

The required networks for the Standard Interaction Model are the knowledge network and the

interaction sphere network. The interaction sphere it is a sparse matrix that is treated separately

in Construct and describes which alter agents an ego agent is aware of for initiating interactions.

As models treat any optional network which is not provided by the user as a homogeneous

network, a user-specified knowledge network is required because if it were a homogeneous

network the simulation becomes trivial. In one case, no agent possess knowledge, and thus

cannot spread any information. In the other case, all agents have perfect knowledge, and no

spread of information can happen as all agents already possess all knowledge. All other networks

mentioned in this section are optional networks. Further information is provided in the Model

Dependencies Section.

Proximity between two agents (𝑃𝑋𝑖,𝑗) is comprised of three factors, the physical proximity

network (𝑃𝑃𝑖,𝑗), social proximity network (𝑆𝑃𝑖,𝑗), and sociodemographic proximity network

(𝐷𝑃𝑖,𝑗). Each factor has an associated weight to determine importance in calculating proximity,

physical proximity weight network (𝑃𝑃𝑊𝑖(𝑡)), social proximity weight network (𝑆𝑃𝑊𝑖(𝑡)), and

sociodemographic proximity weight network (𝐷𝑃𝑊𝑖(𝑡)). These factors are based on the agent

attempting to initiate an interaction and can vary over time. Overal proximity is then,

𝑃𝑋𝑖,𝑗 = 𝑃𝑃𝑊𝑖(𝑡)𝑃𝑃𝑖,𝑗 + 𝑆𝑃𝑊𝑖(𝑡)𝑆𝑃𝑖,𝑗 + 𝐷𝑃𝑊𝑖(𝑡)𝐷𝑃𝑖,𝑗.

The other two factors for determining probability weights are knowledge similarity (𝐾𝑆𝑖,𝑗)

and knowledge expertise (𝐾𝐸𝑖,𝑗). These two factors are sums over the same quantities just with

different indices to sum over. Using 𝐾𝑖
∗ as the set of knowledge that agent 𝑖 knows we calculate

knowledge similarity and expertise as,

59

𝐾𝑆𝑖,𝑗 = ∑ 𝐾𝑊𝑖,𝑘

𝑘∈𝐾𝑖
∗∩𝐾𝑗

∗

, 𝐾𝐸𝑖,𝑗 = ∑ 𝐾𝑊𝑖,𝑘

𝑘∈𝐾𝑖
∗̅̅ ̅̅ ∩𝐾𝑗

∗

,

where 𝐾𝑊𝑖,𝑘 is the knowledge weight network that the initiator agent places on being connected

to a knowledge node. These two factors are weighted by the knowledge similarity weight

network (𝐾𝑆𝑊𝑖(𝑡)), and the knowledge expertise weight network (𝐾𝐸𝑊𝑖(𝑡)).

Combining these factors get an overall probability weight (𝑃𝑖,𝑗) which is stored in the

interaction probability network,

𝑃𝑖,𝑗 = 𝑃𝑋𝑖,𝑗 + 𝐾𝑆𝑊𝑖(𝑡)𝐾𝑆𝑖,𝑗 + 𝐾𝐸𝑊𝑖(𝑡)𝐾𝐸𝑖,𝑗.

These are probability weights and not probabilities as additional restrictions are applied. The

agent active timeperiod network defines the timeperiods an agent is active and, when not active,

the agent cannot interact, and the associated probability weights are set to zero. Additionally, the

agent access network applies a hard restriction on interaction. If an (row agent, column agent)

element is zero then the row agent cannot initiate interactions with the column agent however,

this element does not dictate if the column agent can initiate communication with the row agent.

This is true only if the symmetrical element is also non-zero. The interaction sphere in this model

operates almost identically to the access network except, the interaction sphere employs a sparse

representation which improves performance. Agents also only have so many times they can both

initiate and be initiated upon in each timeperiod which set by the agent initiation count network

and agent reception count network, respectively. This creates another set of restrictions as

interaction pairs are formed that makes a normalization of probability weights futile. Finally

using either communication medium access network 3d or communication medium access

network, interaction probability is set to zero if a common medium both agents have access to

cannot be found.

As mentioned earlier, interaction pair formation is dynamic and as pairs form the interaction

probabilities within a set of agents can change. First, an agent with remaining available

initiations is chosen randomly with equal probability of selection and then their available

initiations is decremented if the pair is formed. Using the probability weights discussed above an

agent is chosen with remaining available receptions, which as with initiations, is then

decremented if the pair is formed. Agents can self-interact, in which case reception count is not

decremented. Except for self-interactions, a given pair can only interact once in a time period

regardless of which agent was the initiator. This process continues until no more initiators are

available.

Once a potential interaction pair is selected, it is not formally formed until at least one

interaction message is created. Interaction messages require a communication medium from the

communication medium nodeset. For a potential pair to be formally formed, as discussed

previously, both agents must have a common medium. Either communication medium

preferences network 3d or communication medium preferences network is used to determine

60

which medium is used. To avoid potential conflicts, these networks should be non-zero if using

non-default values.

From here, pieces of information or items are attempted to be added to a message. A message

minimally contains information about the sender, receiver, and communication medium, but

additional information, knowledge in this case, is contained in a set of items attached to the

message. First, a check is done on the sending agent for the node attribute

“can_send_knowledge” and on the receiving agent for the node attribute

“can_recieve_knowledge” in conjunction with the knowledge message complexity network. If

the values are “true”, “true”, and non-zero respectively, knowledge items are added based on

the knowledge priority network. Lastly, for each piece of knowledge, the medium knowledge

network and learnable knowledge network are checked to make sure that the piece of knowledge

is learnable and can be sent over the message medium.

Though knowledge items are added based on their weight in the “knowledge priority

network”, these items are in randomized order for the creation of the message. When a message

is created if the number of items is larger than the medium’s “maxMsgComplexity” node

attribute, items are removed to ensure the maximum message complexity is enforced. While

some knowledge may have priority over others, this method is meant to reflect that there may be

other types of items in a message and allows the property to be enforced without bias. One may

think of this decision in the example of an individual intending to prioritize content in a message,

but depending on the medium and receiver, the actual content communicated may be limited in

ways unintended by the sender.

Finally, both messages are checked to see if they contain a non-zero number of items. If

either message count is non-zero, the interaction pair is formally created. Due to the large

amount of complexity that can arise from heterogenous initial conditions, this step is the only

step in the model in which progression is not deterministic. If the interaction pair is not created,

the process continues with no change to simulation state. Once the interaction pair has been

formed its message is added to Construct’s central message queue. If the number of times an

interaction pair formation fails becomes greater than the number of agents squared, pairing is

ended prematurely, and the model’s Think function completes.

The Standard Interaction Model’s Communicate function then parses all knowledge related

items in all messages in the message queue before the queue is cleared at the end of the time

period. The knowledge network is then increased based on the receiver node’s attribute

“learning_rate”(𝑙𝑟) in the following equation,

𝐾𝑖,𝑘 = 𝐾𝑖,𝑘 + 𝑙𝑟(1 − 𝐾𝑖,𝑘).

This keeps the knowledge value in the range [0,1] for learning rates in the same range. While

this particular method is not critical to the overall model, it does allow other modification models

to employ a leak of knowledge which will be elaborated upon in the relevant models.

61

Knowledge Transactive Memory Interaction Model

The “Knowledge Transactive Memory Interaction Model” model expands the Standard

Interaction Model by adding a transactive memory (Wegner, 1987) for knowledge for each

agent. Knowledge Transactive Memory (KTM) is a data storage for each ego agent on what

knowledge alter agents in the ego agent’s sphere knows. This storage is incomplete as it does not

directly use the knowledge network. Instead, the storage relies on recording interactions to

populate what agents know about each other. This model builds upon the Standard Interaction

Model and adopts many of the functions used therein. Because of this, the Knowledge

Transactive Memory Interaction Model is mutually exclusive with the Standard Interaction

Model. All required networks in the Standard Interaction model are also required for the

Knowledge Transactive Memory Interaction Model and similarly for optional networks. An

example for calling this model can be seen below.

<models>

 <model name="Knowledge Transactive Memory Interaction Model">

 <param name=”false_positive_rate” value=”0.3”/>

 <param name=”false_negative_rate” value=”0.2”/>

 <param name=”threshold” value=”0.1”/>

 </model>

</models>

Implementation for loading an arbitrary sparse graph such as the knowledge transactive

memory is not yet complete. Instead, to seed the transactive memory three model parameters are

used, “false_positive_rate”, “false_negative_rate”, and “threshold”. The threshold

simply dictates what percentage of entries to seed. The false negative rate is the fraction of

knowledge that an alter agent in the ego agent’s memory does not know that the alter agent

actually knows. Likewise, the false positive rate is the fraction of knowledge the ego agent thinks

an alter agent knows, but in actuality does not.

The primary differences are a modification for how similarities and expertise are calculated,

an additional type of item that can be added to a message called a KTM item, which requires the

transactive knowledge message complexity network which is used in a way similar to the

knowledge message complexity network that was used, and additional parsing to handle this

additional type of message item.

For this new type of message item, rather than being the sender sharing a piece of knowledge

to the receiver, the sender instead shares the information that another agent knows a piece of

knowledge, which we will refer to as a KTM item. When an agent receives either this type of

item or a knowledge item, that agent adds that information to their transactive memory. Each

agent then has a memory about what other agents knows. This memory is not perfect however, as

any secondhand information is not guaranteed to still be true. One can imagine a game of

telephone (AKA Chinese whispers) where a chain of individuals secretly communicates a

message to the next person in the chain in hopes of preserving the message. In a perfect system,

this would be achievable, but it is almost a certainty that in a real setting that an ego agent will

62

eventually send an item about an alter agent, that the ego believes to be true, but is not. The

existence of this divide between reality and perception allows Construct agents to better match

social theory and real-world behaviors. For example, Ren et al. (2006) used Construct’s

transactive memory mechanisms to show evidence that people trained on a task in a group

setting are better able to solve a problem than those trained individually and then forced into a

group setting.

This modifies the calculation of similarity and expertise in that instead of using the true

knowledge that two agents know, the ego agents deciding who to initiate interactions with

instead uses their own transactive memory which is incomplete and in certain situations in error.

In addition, it can be a heavy burden to remember everyone in a system. Individuals typically

only retain information about agents in their sphere of influence. When deciding about agents

outside their sphere of influence, ego agents instead reference a generalized group or generalized

other.

The nodeset “agentgroup” is not a strictly required nodeset but is a requirement for

generalized groups. If the nodeset is not present, the simulation defaults to the generalized other

in such cases. In such cases as group are used, this model takes as an optional network agent

group membership network which simply specifies if an agent is in a group. Naturally, an agent

can be in a single group, no group, or many to all groups. If the agent belongs to one or many

groups, one of those groups is selected randomly for the purpose of knowledge similarity and

expertise. A group knows a piece of knowledge with probability equal to the fraction of agents in

that group that know that piece of knowledge. This probability is static and recalculated once

every time period. If the agent is not in a group or no groups exist, the generalized other is used

instead which has its knowledge probability determined in the same way as generalized groups

using the entire population of agents.

In addition to adding knowledge items to a message in the exact same way as the Standard

Interaction Model, KTM items are added in a similar way using “can_send_knowledgeTM” and

“can_receive_knowledgeTM” from a node’s attributes. KTM items however have no

knowledge priority. Items from transactive memory are included in a uniformly random manner.

This means that if more knowledge is known about an alter agent, it is more likely any piece of

information about that alter agent will be added to the ego agent’s message. When the items are

then added to the message if it is larger than the medium’s “maxMsgComplexity” node attribute,

items are randomly removed regardless of whether they are knowledge or KTM items.

Additions to message parsing is as minor as the additions to message formation. Knowledge

items are parsed in the same way except it is also added to the receiver’s transactive memory

with the alter agent being the sender of the message. KTM items are added to the receiver’s

transactive memory with the alter agent coming from the item the sender attached rather than the

sender being the alter agent. As an example, Agent A may send a message to Agent B that Agent

C knows knowledge K. Agent A will then add that Agent C knows knowledge K into their

transactive memory. Some obvious situations are avoided when sending a KTM item. An agent

63

cannot send a KTM item about themselves or the intended receiver as both would have perfect

memory about what knowledge they know.

Twitter Interaction Model

The “Twitter Interaction Model” aims to simulate the Twitter environment. Twitter-

style communications has frequently been modeled in the world of network analysis and agent

based simulations. To simulate Twitter, we need two primary concepts, how do agents decide

when to create a tweet, reply, quote, or retweet and how do agents decide which tweets, replies,

quotes, or retweets to read. To facilitate simulating this, event entities will be constructed rather

than creating various proxy functions to emulate the environment without saving the information

in a tweet like format. Additionally, methods are constructed to maintain long-term stability and

provide a soft cap on the memory usage of the simulation, as well as implementing twitter

followers. Unlike the Knowledge Transactive Memory Interaction Model, this model can be run

side by side with the Standard Interaction Model and other interaction models.

The Twitter Interaction Model requires two networks, the “knowledge network” which

serves a similar function in this model as other models, and the “twitter follower network” which

provides a seed network to begin simulations. A homogeneous network for twitter followers is

allowed by simulation standards and would produce non-trivial results, however almost any

situation would call for an initial seeding of the network. Additional requirements include three

model parameters “relax_rate”, “interval_time_duration”, and “maximum_post_inactivity”.

Relax rate determines how quickly opinions change, interval time duration is the amount of time

between two time periods, and maximum post inactivity is how long an event like a tweet needs

to be inactive before it is removed. Each of these will be further discussed in this section. Below

is an example XML input.

<models>

 <model name="Twitter Interaction Model">

 <param name=”relax_rate” value=”0.3”/>

 <param name=”interval_time_duration” value=”1.0”/>

 <param name=”maximum_post_inactivity” value=”10.0”/>

 </model>

</models>

It is difficult to talk about both primary concepts at the same time and also to introduce one at

a time. First, we will go over how users create tweets, both spontaneously and in response to

reading tweets, replies, etc. before going over how users choose which events to read. A general

twitter event can be any type of content a user posts to Twitter. Users only spontaneously create

original tweets. The number of tweets a user will generate in a time period is equal to an agent’s

“Twitter_post_density” node attribute times the “interval_time_duration”.

Most events follow a similar structure for creating an event. The event contains an id, user,

timestamp, and a single piece of knowledge. When a tweet is generated, a random piece of

knowledge is selected. In addition, an opinion is attached to a tweet which is a statement by the

64

posting user whether they believe that piece of knowledge is true or false. Users state that a piece

of knowledge is true with probability received from the knowledge opinion network (𝑂𝑖,𝑘). Any

event may also mention other users. This will only become significant when examining how

users decide which events to read.

The other types of events: replies, retweets, and quotes, are created in response to reading an

event. When an event is read, the reading user has probability based on the agent’s node attribute

“Twitter_reply_probability” to reply to an event, “Twitter_repost_probability” to

retweet a tweet, and “Twitter_quote_probability” to quote an event. When an event is

responded to, the response will contain/be about the same piece of knowledge. This is meant to

signify that tweets are typically short and primarily about one topic/piece of knowledge. Quotes

also attach the same opinion used in the parent event, but only if the user’s opinion aligns with

the parent’s opinion. This uses the same probability sampling from the knowledge opinion

network. Replies and retweets use independent opinion generation in the same way an original

tweet is generated.

When reading an event, the reading user has the option to follow the sending user. The

decision to follow is made by comparing the reader’s perceptions about the sending user’s

opinions with their own. Perceptions (𝑅𝑖,𝑗,𝑘) operate similarly to transactive memory except for

opinions rather than knowledge. In this case, a differentiating factor is required for not only true

and false, but also if the ego agents have no information on an alter’s opinion. For this reason,

perceptions take on +1 for true, -1 for false, and 0 for no information. The probability that agent i

follows agent j after reading agent j’s post is then,

𝑃𝐹𝑖,𝑗 = 𝐶𝑗 (1 −
1

|𝐾𝑖
∗|

∑ |
𝑅𝑖,𝑗,𝑘 + 1

2
− 𝑂𝑖,𝑘|

𝑘

),

where 𝐶𝑗 is an agent’s node attribute “Twitter_charisma” and |𝐾𝑖
∗| is the number of pieces of

knowledge agent i knows. If an agent’s node attribute of “Twitter_autofollow” is “true”, an

ego agent will follow an alter agent when the alter agent follows the ego agent if the alter agent

is not already following the ego agent.

In addition to reading events, agents passively add followers and remove followers each time

period. The follow recommendation on Twitter is determined by proprietary software that is not

disclosed to the public. As such, we attempt to reproduce a recommendation system based on the

graph of mentions. Currently, users will mention a random agent when generating any type of

post except for a quote, with plans to expand this mechanism with more complex mechanics in

future. More methods for removing followers as can be found in Kwak et al. (2012). We use a

graph of responses, unidirectional relationships, and Jaccard similarity of follows to indicate how

likely an agent is to unfollow another, as many of the other factors cannot be utilized due to

various idealizations this model has made to the Twitter environment. Two scale factors

“Twitter_add_followers_scale_factor” and

“Twitter_remove_followers_scale_factor” which are agent node attributes determine the

65

strength of this effect with the former increasing likelihood of following, the later decreasing the

chance of unfollowing, and are both scaled by the “interval_time_duration”.

Another feature that is not currently public knowledge is how Twitter orders its Twitter feed

for each user. For this, we will build on several core concepts. When an agent is mentioned in a

post, that post should appear with high priority in an agent’s feed. In addition, replies to an agent

post should also have a high priority of appearing in an agent’s feed. Direct responses like these

are critical to forming an engaging dialogue between individuals which is obviously a goal for a

platform that wants its base to constantly use that platform. In addition, agents would naturally

want to see posts from other agents they follow. Finally, if an agent has no mentions, replies, or

follower posts to read, the agent will receive posts based on popularity. In an ideal system, these

posts would be related to other content the agent likes to absorb. Given the obscure nature of

how Twitter accomplishes this goal and a desire to keep this base model simple we ignore this

possible mechanism.

Posts are separated into these three priority levels of replies and mentions, follower posts,

and all other posts. Within each level, the posts are ordered by their popularity, which we define

as how large a post’s cascade is divided by how old the post is. In this definition, we only

consider the cascade below a post. Even if a reply is a part of a large cascade, if that reply does

not itself have a large resulting cascade, we do not consider that reply as being “popular”. Lastly,

random posts are sprinkled through the feed after this ordering to promote the agent to branch

out and explore new topics/agents. This is achieved by swapping two posts position in a feed.

Ten percent of a feed is swapped in this fashion.

Agents read posts during the Think function after generating original post. The number of

posts an agent reads is determined by the agent’s node attribute “Twitter_reading_density”.

Multiplying this density by the “interval_time_duration”, gives the number of posts an agent

will read in a time period. Like creating original posts, agents will only read posts if that agent is

active via the agent active timeperiod network. Agents read posts in order in their feed and only

read posts once. Therefore, when a post is read is removed from an agent’s feed and can never

reenter an agent’s feed. With this restriction, posts are still capable of affecting an agent over

multiple time periods.

When an agent reads a post, they gain the knowledge that post is communicating as well as

adding the posting agent’s opinion to their perceptions about that agent. In addition, the reading

agent will also absorb information from the local sphere of posts around the read post. Because

every post in a cascade is about the same piece of knowledge, the reading agent will only add

opinions to their perceptions. When reading a root or original post, all direct replies to that post

are read and their opinions added to the ego’s perceptions. These replies do not have the

opportunity for their posting agent to be followed in this case. For retweets, the retweeted post is

parsed for opinions as well as any of the retweet’s direct replies. The same is true for quotes.

Finally, replies to a reply are parsed for opinions as well as the post the reply was replying to. In

the case where the reply is replying to something other than the root post, the root post is also

66

parsed for opinions. In this scenario, it is possible for a post’s opinions to be parsed multiple

times.

Agent’s opinions change over time based on information they gather from other agents. If

multiple independent sources claim a something is true or false, one might expect that claim is

factual. In this way, other agent’s opinions are used inform the ego’s opinion in the following

equation,

𝑂𝑖,𝑘(𝑡) = (1 − 𝑟𝑟)𝑂𝑖,𝑘(𝑡 − 1) +
𝑟𝑟

∑|𝑅𝑖,𝑗,𝑘|
∑|𝑅𝑖,𝑗,𝑘| (

𝑅𝑖,𝑗,𝑘+1

2
),

where rr is the “relax_rate”. This keeps opinions in the range [0,1] and does not bias opinion

dynamics if a user does not have a perception of all agents in the simulation.

Finally, to maintain simulation longevity, posts are removed from the history if they remain

inactive for an amount of time equal to “maximum_post_inactivity”. A post is inactive if no

posts are added to its cascade. In this way, entire cascades are removed at the same time both for

efficiency and also to prevent potential conflicts of looking up a post that has been deleted.

Removed posts are also removed all agent’s feeds.

As a final note, communication mediums typically take the form of books, billboards, email,

conversations, etc. Broadly, Twitter would be considered an internet medium if implemented in

the Standard Interaction Model, however, to ensure proper cooperation with other interaction and

modification models, the Twitter Interaction model creates its own communication medium

which is obscured from other models. Many features in the Update and Communicate functions

operate regardless of the communication medium used. To avoid potential unintended conflicts

functions that do depend on communication medium will simply ignore this extra

communication medium. An obvious example would be potential conflicts with the Mail model

which can delay a message being sent.

Modification Models

These models do not inherently generate new messages. Rather a modification model aims at

manipulating, removing, or in some cases generating new messages in response to existing

messages. An example is the Subscription Model, which can copy messages and forward them

different agents. In addition, these models may also modify networks.

Mail Model

The “Mail Model” constructs mailboxes for each user. Messages will be placed into

mailboxes with a probability from the agent mail usage by medium network. If this happens, that

message is removed from Construct’s central message queue. Agents may then check their inbox

each time period using the probability from mail check probability network. If this happens, all

messages in that agent’s inbox return to Construct’s central message queue. When implemented

in this way, messages can enter a mailbox and subsequently leaving when the mailbox is checked

in the same time period.

67

Knowledge Learning Difficulty Model

The “Knowledge Learning Difficulty Model” scans Construct’s central message queue

during the Update function for any message items that are about knowledge. For each

knowledge item, the receiver has a probability from knowledge learning difficulty network to not

receive that knowledge item. In the case that a message has no more items, it is removed from

the message queue. In this model, “knowledge learning difficulty network” is a required network

to be included in the input deck.

Literacy Model

The “Literacy Model” scans the message queue during the Update function. The receiver

and sender’s literacy are gathered from the literacy strength network. For each item, if that item

is a knowledge item, that item is removed if either agent is found to be illiterate, which is found

to be true with a probability equal to their literacy.

Forgetting Model

When messages are parsed during the Communicate function, the “Forgetting Model”

records what knowledge was sent to which receiver. Then during the Clean Up function, if an

agent was not received a piece of knowledge the value of that entry in the knowledge network is

decremented with probability from the knowledge forgetting prob network. The amount entry is

decreased comes from the knowledge forgetting rate network. Agent’s knowledge value cannot

fall below zero and an agent cannot forget a piece of knowledge if that agent is the only agent

that knows that piece of knowledge.

Subscription Model

When a message is parsed by the “Subscription Model” during the Communicate

function, that message is added to an internal “public” queue with probability from the public

propensity network where the relevant agent is the sender. This public queue is not accessible

expect by the Subscription model. In the Clean Up function agents if they are not subscribed in

the subscription network, each agent subscribes with probability from subscription probability

network where the column agent is the sender. Finally, during the Think function, public

messages from the previous time period are copied and forwarded to all subscribing agents.

Model Dependencies

Each of the models have been discussed in detail already. This section aims to summarize

what each model requires in the input deck, what are optional and their defaults, and bounds for

network weights.

Standard Interaction Model

Table 5. Required nodesets for the Standard Interaction model.

Nodeset name Expected Attributes Attribute Ranges

68

agent learning_rate [0,1]

can_send_knowledge true or false

can_receive_knowledge true or false

knowledge

timeperiod

Table 6. Required networks for the Standard Interaction model.

Network Names

knowledge network

interaction sphere network

Table 7. Optional networks for the Standard Interaction model.

Network Names Default Values

access network true

agent active timeperiod network true

agent initiation count network 1

agent reception count network 1

communication medium access network 1

communication medium preferences network 1.0

communication medium preferences network 3d Uses the 2d network if this network is not present in

the input deck.

interaction knowledge weight network 1.0

knowledge expertise weight network 1.0

knowledge message complexity network 1

knowledge priority network 1.0

knowledge similarity weight network 1.0

learnable knowledge network true

physical proximity network 1.0

physical proximity weight network 1.0

social proximity network 1.0

social proximity weight network 1.0

sociodemographic proximity network 1.0

sociodemographic proximity weight network 1.0

Knowledge Transactive Memory

The Knowledge Transactive Memory Interaction model uses three model parameters to give

the transactive memory an initial state. It is also mutually exclusive with the Standard Interaction

model.

• false_positive_rate

• false_negative_rate

• threshold

Table 8. Required nodesets for the Knowledge Transactive Memory Interaction model.

Nodeset name Expected Attributes Attribute Ranges

agent learning_rate [0,1]

can_send_knowledge true or false

69

can_receive_knowledge true or false

can_send_knowledgeTM true or false

can_receive_knowledgeTM true or false

knowledge N/A

timeperiod N/A

The Knowledge Transactive Memory Interaction model uses all the required networks from

the Standard Interaction Model as well as all the optional networks with the same default values.

Below are the model specific networks. Not included is the “agent group membership network”

which is only required if the “agentgroup” nodeset is in use.

Table 9. Optional networks for the Standard Interaction model.

Network Names Default Values

transactive knowledge message complexity network 1

Twitter Interaction Model

The Twitter Interaction model uses three model parameters and is compatible with all other

interaction models.

relax_rate

interval_time_duration

maximum_post_inactivity

Table 10. Required nodesets for the Twitter Interaction model.

Nodeset name Expected Attributes Attribute Ranges

agent learning_rate [0,1]

can_send_knowledge true or false

can_receive_knowledge true or false

agent_type {“gen”}

Twitter_post_density [0,∞)

Twitter_reply_probability [0,1]

Twitter_repost_probability [0,1]

Twitter_reading_density [0,∞)

Twitter_add_followers_scale_factor [0,∞)

Twitter_remove_followers_scale_factor [0,∞)

Twitter_auto_follow true or false

Twitter_charisma [0,1]

knowledge

timeperiod

Table 11. Required networks for the Twitter Interaction model.

Network Names

knowledge network

twitter follower network

70

Table 12. Optional networks for the Twitter Interaction model.

Network Names Default Values

agent active timeperiod network true

knowledge opinion network 0.5

Mail Model

Table 13. Optional networks for the Mail model.

Network Names Default Values

agent mail usage by medium network 1.0

mail check probability network 0.5

Knowledge Learning Difficulty Model

Table 14. Required networks for the Knowledge Learning Difficulty model.

Network Names

knowledge learning difficulty network

Literacy Model

Table 15. Optional networks for the Literacy model.

Network Names Default Values

literacy strength network 0.9

Forgetting Model

Table 16. Optional networks for the Forgetting model.

Network Names Default Values

knowledge forgetting rate network 0.25

knowledge forgetting prob network 0.5

Subscription Model

Table 17. Optional networks for the Subscription model.

Network Names Default Values

public propensity network 0.1

subscription network false

subscription probability network 0.1

Output

There are three output methods currently provided by Construct, each of which uses a

different file format. CSV output produces a comma separated values representation of a dense

matrix over time. Dynetml output produces a DyNetML format file for the specified networks.

The messages output produces a JSON format file detailing each message and all items

contained in the message.

71

CSV Output

Below is an example usage of the CSV output method (note that type specifier for CSV

output is "output_graph").

 <output type="output_graph">

 <parameter name="network_name" value="knowledge network"/>

 <parameter name="output_file" value="knowledge.csv"/>

 <parameter name="timeperiods" value="all"/>

 </output>

Here, the network “knowledge network” is being written to the file “knowledge.csv”

for all timeperiods. Any network created in Construct can be given as a value for

“network_name”, even networks that are not explicitly defined in the input XML deck. Any

optional network generated by a model can be used for output. This method does require the file

name use a .csv file extension.

The structure of the CSV file contains the source nodeset on the rows and target nodeset for

the columns. Node names are not included to reduce file size; rather the row number corresponds

to the source node index and the column number corresponds to the target node index. Two

values can be used for the parameter “timeperiods”: “all” or “last”. When “last” is used,

the network is only output during the last timeperiod of the simulation. For “all”, every

timeperiod is output. In the CSV file, an empty line indicates the transition from one timeperiod

to the next. The row number is then reset at the empty line for determining which row

corresponds to which node index. This method is primarily used for large simulations where

output files can become excessively large.

DyNetML Output

Below is an example of the dynetml output method.

 <output type="output_dynetml">

 <parameter name="output_all_networks" value="false"/>

 <parameter name="network_names" value="knowledge network,interaction

network"/>

 <parameter name="output_file" value="construct_networks.xml"/>

 <parameter name="timeperiods" value="all"/>

 </output>

In this example, the “knowledge network” and “interaction network” are being

sent to “construct_networks.xml” for all timeperiods. The parameter

“output_all_networks” allows for all networks stored in Construct to be output if its value is

“true”. In this case the parameter “network_names” is not required. For specific network

output, the parameter “network_names” takes a comma separated list of network names and

only outputs those specified. The output file should always be in XML format (.xml file

extension) and the content of the file is consistent with the DyNetML format (DyNetML is an

http://www.casos.cs.cmu.edu/projects/dynetml/

72

XML derivative language for exchanging rich social network data). As with CSV output, either

the “last” or “all” timeperiods can be specified for the “timeperiods” parameter.

Messages Output

Below is an example of the messages output method.

 <output type="output_Messages">

 <parameter name="output_file" value="messages.json"/>

 </output>

Here only the parameter “output_file” is used for specifying the file name to use for output.

Files are required to be in JSON format (.json file extension). The JSON representation in the

ouput file contains all messages sent each timeperiod. Messages contain the sending agent index,

receiving agent index, the name of the communication medium used, and a list of message items.

Each message item contains a set of attributes, indexes, and values. Below is an example of a

message in JSON format.

{

 "sender" : 93,

 "receiver" : 0,

 "medium index" : "CommunicationMedium_0",

 "Items" : [

 {

 "attributes" : ["SIM knowledge","knowledge"],

 "indexes" : {

 "knowledge" : 3

 },

 "values" : {

 }

 }

]

}

In the above example, agent 93 sent a message to agent 0 using

“CommunicationMedium_0”. The message contains only one item. That item has attributes

“knowledge” and “SIM knowledge”. “knowledge” indicates that item contains knowledge

that is to be sent to the receiver. “SIM knowledge” is an internal usage attribute that aids in

ensuring only one entity parses a knowledge item, in this case the Standard Interaction Model.

The indexes indicate that the knowledge node being communicated about has an index of 3. This

gives a complete list of all messages sent using Construct’s central messaging system.

73

References

Apache Software Foundation. (2019, September 10). MapReduce Tutorial.

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-

core/MapReduceTutorial.html

Carley, K. M. (1986). An approach for relating social structure to cognitive structure. Journal of

Mathematical Sociology, 12(2), 137-189. https://doi.org/10.1080/0022250X.1986.9990010

Carley, K. M. (1990). Group stability: A socio-cognitive approach. Advances in Group

Processes: Theory and Research, (Vol. 7, pp. 1-44). JAI Press.

http://www.casos.cs.cmu.edu/events/summer_institute/2014/reading_list/pubs/carley_1990_

groupstability.pdf

Carley, K. M. (1991). A theory of group stability. American Sociology Review, 56(3), 331–354.

https://doi.org/10.2307/2096108

Carley, K. M. 1995. Communication technologies and their effect on cultural homogeneity,

consensus, and the diffusion of new ideas. Sociological Perspectives, 38(4), 547–571.

https://doi.org/10.2307/1389272

Carley, K. M. (2002). Computational organization science: A new frontier. Proceedings of the

National Academy of Sciences of the United States of America, 99(Suppl 3), 7257-7262.

https://doi.org/10.1073/pnas.082080599

Carley, K. M. (2006). A dynamic network approach to the assessment of terrorist groups and the

impact of alternative courses of action. In Visualising Network Information (pp. KN1-1 –

KN1-10). Meeting Proceedings RTO-MP-IST-063, Keynote 1. Neuilly-sur-Seine, France:

RTO. https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/RTO-MP-

IST-063/$MP-IST-063-KN1.pdf

Carley, K. M., Martin, M. K., & Hirshman, B. R. (2009). The etiology of social change, Topics

in Cognitive Science, 1(4), 621-650. https://doi.org/10.1111/j.1756-8765.2009.01037.x

Carley, K. M., & Maxwell, D. T. (2006). Understanding taxpayer behavior and assessing

potential IRS interventions using multiagent dynamic-network simulations. In Dalton &

Bliss (Eds.), Recent Research on Tax Administration and Compliance: Proceedings of

the 2006 IRS Research Conference (pp. 93-106). Washington, D.C.

https://www.irs.gov/pub/irs-soi/06carley.pdf

Carley, K. M., & Newell, A. (1994). The nature of the social agent. Journal of Mathematical

Sociology, 19(4), 221-262. https://doi.org/10.1080/0022250X.1994.9990145

Carley, K. M., & Reminga, J. (2004). ORA: Organization Risk Analyzer. (Technical Report

CMU-ISRI-04-106). Pittsburgh, PA, USA: Carnegie Mellon University, School of

Computer Science, Institute for Software Research. http://reports-

archive.adm.cs.cmu.edu/anon/isri2004/CMU-ISRI-04-106.pdf

Carley, K. M., Robertson, D. C., Martin, M. K., Lee, J. S., St Charles, J. L., & Hirshman, B. R.

(2010). Predicting intentional and inadvertent non-compliance. In M. E. Gangi & A.

Plumley (Eds.). Recent Research on Tax: Selected Papers Given at the 2010 IRS Research

https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://doi.org/10.1080/0022250X.1986.9990010
http://www.casos.cs.cmu.edu/events/summer_institute/2014/reading_list/pubs/carley_1990_groupstability.pdf
http://www.casos.cs.cmu.edu/events/summer_institute/2014/reading_list/pubs/carley_1990_groupstability.pdf
https://doi.org/10.2307/2096108
https://doi.org/10.2307/1389272
https://doi.org/10.1073/pnas.082080599
https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/RTO-MP-IST-063/$MP-IST-063-KN1.pdf
https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/RTO-MP-IST-063/$MP-IST-063-KN1.pdf
https://doi.org/10.1111/j.1756-8765.2009.01037.x
https://www.irs.gov/pub/irs-soi/06carley.pdf
https://doi.org/10.1080/0022250X.1994.9990145
http://reports-archive.adm.cs.cmu.edu/anon/isri2004/CMU-ISRI-04-106.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isri2004/CMU-ISRI-04-106.pdf

74

Conference Administration and Compliance (pp. 53-82). Washington, DC. https://iwp-

koeln.org/wp-content/uploads/Proceedings_IRS_Conference_2010.pdf#page=162

Epstein, J. M. & Axtell, R. (1996). Growing artificial societies: Social science from the bottom

up. Brookings Institution Press.

Festinger, L. (1954). A theory of social comparison processes, Human Relations, 7(2), 117-140.

https://doi.org/10.1177/001872675400700202

Festinger, L. (1957). A theory of cognitive dissonance. Row, Peterson.

Friedkin, N. (1998). A structural theory of social influence, Cambridge University Press.

Gardner, M. (1970, October). Mathematical Games - The Fantastic Combinations of John

Conway's New Solitaire Game 'Life'. Scientific American, 223, 120–123.

https://doi.org/10.1038/scientificamerican1070-120

Giddens, A. (1986). The constitution of society: Outline of the theory of structuration. University

of California Press.

Hirshman, B. R., Birukou, A., Martin, M. K., Bigrigg, M. W., & Carley, K. M. (2008). The

impact of educational interventions on real & stylized cities. (Technical Report CMU-ISR-

08-114). Pittsburgh, PA, USA: Carnegie Mellon University, School of Computer Science,

Institute for Software Research. http://reports-archive.adm.cs.cmu.edu/anon/isr2008/CMU-

ISR-08-114.pdf

Hirshman, B. R., Carley, K. M., & Kowalchuck, M.J. (2007a). Loading networks in Construct.

(Technical Report CMU-ISRI-07-116). Pittsburgh, PA, USA: Carnegie Mellon University,

School of Computer Science, Institute for Software Research. http://reports-

archive.adm.cs.cmu.edu/anon/isri2007/CMU-ISRI-07-116.pdf

Hirshman, B. R., Carley, K. M., & Kowalchuck, M.J. (2007b). Specifying agents in Construct.

(Technical Report CMU-ISRI-07-107). Pittsburgh, PA, USA: Carnegie Mellon University,

School of Computer Science, Institute for Software Research. http://reports-

archive.adm.cs.cmu.edu/anon/isri2007/CMU-ISRI-07-107.pdf

Joseph, K., Carley, K. M., Filonuk, D., Morgan, G. P., & Pfeffer, J. (2014). Arab Spring: From

newspaper. Social Networks and Mining, 4, 177. https://doi.org/10.1007/s13278-014-0177-5

Joseph, K., Morgan, G. P., Martin, M. K., & Carley, K. M. (2014). On the coevolution of

stereotype, culture, and social relationships: An agent-based model. Social Science Computer

Review. 32(3), 295–311. https://doi.org/10.1177/0894439313511388

Kim, B. (2001). Social constructivism. In M. Orey (Ed.), Emerging Perspectives on Learning,

Teaching, and Technology. http://epltt.coe.uga.edu/

Knoeller, J. (2013). Analyzing job/machine matches using condor_q-analyze [PowerPoint

slides]. Paradyn/HTCondor Week 2013:

https://research.cs.wisc.edu/htcondor/HTCondorWeek2013/presentations/KnoellerJ_QAnaly

ze.pdf

Krackhardt, D., & Carley, K. M. (1998). A PCANS model of structure in organizations. In

Proceedings of the 1998 International Symposium on Command and Control Research and

Technology (pp. 113-119). Vienna, VA: Evidence Based Research.

https://iwp-koeln.org/wp-content/uploads/Proceedings_IRS_Conference_2010.pdf%23page=162
https://iwp-koeln.org/wp-content/uploads/Proceedings_IRS_Conference_2010.pdf%23page=162
https://doi.org/10.1177%2F001872675400700202
https://doi.org/10.1038/scientificamerican1070-120
http://reports-archive.adm.cs.cmu.edu/anon/isr2008/CMU-ISR-08-114.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isr2008/CMU-ISR-08-114.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isri2007/CMU-ISRI-07-116.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isri2007/CMU-ISRI-07-116.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isri2007/CMU-ISRI-07-107.pdf
http://reports-archive.adm.cs.cmu.edu/anon/isri2007/CMU-ISRI-07-107.pdf
https://doi.org/10.1007/s13278-014-0177-5
https://doi.org/10.1177/0894439313511388
http://epltt.coe.uga.edu/
https://research.cs.wisc.edu/htcondor/HTCondorWeek2013/presentations/KnoellerJ_QAnalyze.pdf
https://research.cs.wisc.edu/htcondor/HTCondorWeek2013/presentations/KnoellerJ_QAnalyze.pdf

75

Kwak, H., Moon, S., & Lee, W. (2012). More of a Receiver Than a Giver: Why Do People

Unfollow in Twitter?. Proceedings of the International AAAI Conference on Web and Social

Media, 6(1). https://ojs.aaai.org/index.php/ICWSM/article/view/14296

Manis, J. G., & Meltzer, B. N. (1978). Symbolic interaction: A reader in social psychology.

Allyn & Bacon.

MapReduce. (2020, 3 December). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=MapReduce&oldid=992047007

Moon, I.-C., & Carley, K. M. (2007). Modeling and simulation of terrorist networks in social and

geospatial dimensions, IEEE Intelligent Systems, 22(5), 40-49.

https://doi.org/10.1109/MIS.2007.91

Ren, Y., Carley, K., & Argote, L. (2006). The contingent effects of transactive memory: When is

it more beneficial to know what others know? Management Science, 52(5), 671-682.

https://doi.org/10.1287/mnsc.1050.0496

Salancik, G. R., & Pfeffer, J. (1978). A social information processing approach to job attitudes

and task design. Administrative Science Quarterly, 23(2), 224-253.

https://doi.org/10.2307/2392563

Schelling, T. C. (1978). Micromotives and Macrobehavior, Norton.

Schelling, T. C. (1971). Dynamic models of segregation. Journal of mathematical sociology 1.2,

143-186. https://doi.org/10.1080/0022250X.1971.9989794

Schmerl B., Garlan D., Dwivedi V, Bigrigg M. W., and Carley K. M. 2011. SORASCS: a case

study in soa-based platform design for socio-cultural analysis. In Proceedings of the 33rd

International Conference on Software Engineering (ICSE '11) 643–652.

https://doi.org/10.1145/1985793.1985883

Schreiber, C., & Carley, K. M. (2003). The impact of databases on knowledge transfer:

Simulation providing theory. In 2003 NAACSOS Conference Proceedings, Pittsburgh, PA.

https://www.researchgate.net/publication/228430691_The_impact_of_databases_on_knowle

dge_transfer_Simulation_providing_theory_2003_NAACSOS_conference_proceedings

Schreiber, C., & Carley, K. M. (2007). Agent interactions in Construct: An empirical validation

using calibrated grounding. In 2007 BRIMS Conference Proceedings, Norfolk, VA.

https://www.researchgate.net/publication/228725767_Agent_interactions_in_Construct_An

_empirical_validation_using_calibrated_grounding

Schreiber, C., Singh, S., & Carley, K. M. (2004). Construct-A multi-agent network model for the

co-evolution of agents and socio-cultural environments. (Technical Report CMU-ISRI-04-

109). Pittsburgh, PA, USA: Carnegie Mellon University, School of Computer Science,

Institute for Software Research. http://reports-

archive.adm.cs.cmu.edu/anon/isri2004/abstracts/04-117.html.

Simon, H. A. (1957). Administrative behavior: A study of decision-making processes in

administrative organization (2nd ed.). Macmillan.

Stryker, S. (1980). Symbolic Interactionism: A social structural version. Benjamin Cummings.

https://ojs.aaai.org/index.php/ICWSM/article/view/14296
https://en.wikipedia.org/w/index.php?title=MapReduce&oldid=992047007
https://doi.org/10.1109/MIS.2007.91
https://doi.org/10.1287/mnsc.1050.0496
https://doi.org/10.2307/2392563
https://doi.org/10.1080/0022250X.1971.9989794
https://doi.org/10.1145/1985793.1985883
https://www.researchgate.net/publication/228430691_The_impact_of_databases_on_knowledge_transfer_Simulation_providing_theory_2003_NAACSOS_conference_proceedings
https://www.researchgate.net/publication/228430691_The_impact_of_databases_on_knowledge_transfer_Simulation_providing_theory_2003_NAACSOS_conference_proceedings
https://www.researchgate.net/publication/228725767_Agent_interactions_in_Construct_An_empirical_validation_using_calibrated_grounding
https://www.researchgate.net/publication/228725767_Agent_interactions_in_Construct_An_empirical_validation_using_calibrated_grounding
http://reports-archive.adm.cs.cmu.edu/anon/isri2004/abstracts/04-117.html
http://reports-archive.adm.cs.cmu.edu/anon/isri2004/abstracts/04-117.html

76

Tsvetovat, M., & Carley, K. M. (2004). Modeling complex socio-technical systems using multi-

agent simulation methods. Künstliche Intelligenz, 18(2), 23-28.

http://www.casos.cs.cmu.edu/publications/working_papers/tsvetovat_2004_modeling.pdf

Wegner, D. M. (1987). Transactive memory: A contemporary analysis of the group mind. In B.

Mullen, G. R. Goethals (Eds.) Theories of Group Behavior (pp. 185-205). Springer.

https://doi.org/10.1007/978-1-4612-4634-3_9

http://www.casos.cs.cmu.edu/publications/working_papers/tsvetovat_2004_modeling.pdf
https://doi.org/10.1007/978-1-4612-4634-3_9

77

Appendices

Appendix A The Sample Input File (AKA Input Deck)

<construct>

 <construct_vars>

 <var name="time_count" value="100"/>

 <var name="agent_count" value="200"/>

 <var name="knowledge_count" value="100"/>

 <var name="knowledgegroup_count" value="3"/>

 <var name="agentgroup_count" value="1"/>

 </construct_vars>

 <construct_parameters>

 <param name="seed" value="1"/>

 <param name="verbose_initialization" value="false"/>

 </construct_parameters>

 <model name=”Standard Interaction Model”/>

 <nodes>

 <nodeclass name="CommunicationMedium">

 <node name="facetoface">

 <attribute name=“maxMsgComplexity" value="1"/>

 <attribute name=“maximumPercentLearnable"

value="1.0"/>

 <attrubite name=“time_to_send" value="1"/>

 </node>

 </nodeclass>

 <nodeclass name="agent">

 <generator type=”constant”>

 <count value="agent_count"/>

 <attribute name="learning_rate" value="1"/>

 <attribute name="can_send_knowledge" value="true"/>

 <attribute name="can_receive_knowledge" value="true"/>

 </generator>

 </nodeclass>

 <nodeclass name="knowledge">

 <generator type=”constant”>

 <count value=”knowledge_count”>

 </generator>

 </nodeclass>

 <nodeclass name="agentgroup">

 <generator type=”constant”>

 <count value=”agentgroup_count”/>

 </generator>

 </nodeclass>

 <nodeclass type="knowledgegroup" id="knowledgegroup">

 <node name="KG1"/>

 <node name="KG2"/>

 <node name="KG3"/>

 </nodeclass>

 <nodeclass type="timeperiod" id="timeperiod">

 <generator type=”constant”>

 <count value=”time_count”/>

 </generator>

 </nodeclass>

 <nodeclass type="dummy_nodeclass" id="dummy_nodeclass">

 <node id="dummy1" title="dummy1"/>

 </nodeclass>

 </nodes>

 <networks>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="knowledge message

complexity network" link_type="unsigned int"

network_type="dense">

 <generator type="randomuniform">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>

 <param name="min" value="1"/>

 <param name="max" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="agent initiation count

network" link_type="int" network_type="dense">

 <generator type="randomuniform">

78

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>

 <param name="min" value="10"/>

 <param name="max" value="10"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="knowledge" id="knowledge network"

link_type="float" network_type="dense">

 <generator type="randombinary">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::knowledge::count_minus_one"/>

 <param name="mean" value="0.1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="agent" id="access network"

link_type="float" network_type="dense">

 <generator type="constant">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::agent::count_minus_one"/>

 <param name="constant_value" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="knowledge similarity

weight network" link_type="float" network_type="dense">

 <generator type="randomuniform">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>

 <param name="min" value="1.0"/>

 <param name="max" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="knowledge expertise

weight network" link_type="float" network_type="dense">

 <generator type="randomuniform">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>

 <param name="min" value="1.0"/>

 <param name="max" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="knowledge" id="interaction knowledge

weight network" link_type="float" network_type="dense">

 <generator type="randomuniform">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::knowledge::count_minus_one"/>

 <param name="min" value="1.0"/>

 <param name="max" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="physical proximity

weight network" link_type="float" network_type="dense">

 <generator type="randomuniform">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>

 <param name="min" value="1.0"/>

 <param name="max" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="social proximity

weight network" link_type="float" network_type="dense">

 <generator type="randomuniform">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>

79

 <param name="min" value="1.0"/>

 <param name="max" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="agent" id="physical proximity network"

link_type="float" network_type="dense">

 <generator type="randomuniform">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::agent::count_minus_one"/>

 <param name="min" value="1.0"/>

 <param name="max" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="agent" id="social proximity network"

link_type="float" network_type="dense">

 <generator type="randomuniform">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::agent::count_minus_one"/>

 <param name="min" value="1.0"/>

 <param name="max" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="agent" id="sociodemographic proximity

network" link_type="float" network_type="dense">

 <generator type="randomuniform">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::agent::count_minus_one"/>

 <param name="min" value="1.0"/>

 <param name="max" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="agent active

timeperiod network" link_type="bool" network_type="dense">

 <generator type="randombinary">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>

 <param name="mean" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="agent" id="interaction sphere network"

link_type="bool" network_type="dense">

 <generator type="randombinary">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::agent::count_minus_one"/>

 <param name="mean" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="agentgroup" id="agent group membership

network" link_type="bool" network_type="dense">

 <generator type="randombinary">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::agentgroup::count_minus_one"/>

 <param name="mean" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="timeperiod" id="agent reception count

network" link_type="int" network_type="dense">

 <generator type="randombinary">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::timeperiod::count_minus_one"/>

 <param name="mean" value="10.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

80

<!--

 This is the state of the art in my filter work. Have to get

this working properly!

 <generator type="randombinary">

 <rows groups="agent_grp1,agent_grp2"

group_membership_network="'agent group membership network'"/>

 <cols groups="agent_grp3"

group_membership_network="'agent group membership network'"/>

 <param name="mean" value="1.0" />

 </generator>

-->

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="knowledge" id="knowledge priority

network" link_type="unsigned int" network_type="dense">

 <generator type="randomuniform">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::knowledge::count_minus_one"/>

 <param name="min" value="1"/>

 <param name="max" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="knowledge" id="learnable knowledge

network" link_type="bool" network_type="dense">

 <generator type="randombinary">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::knowledge::count_minus_one"/>

 <param name="mean" value="1.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="agent"

target_nodeclass_type="dummy_nodeclass" id="agent forgetting

rate network" link_type="float" network_type="dense">

 <generator type="randomuniform">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0" last="0"/>

 <param name="min" value="0.0"/>

 <param name="max" value="0.0"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <!--

 This network determines which agent has access to which

mediums.

 Set access to zero if you do not want the agent to have

access to that medium.

 -->

 <network src_nodeclass_type="agent"

target_nodeclass_type="CommunicationMedium" id="communication

medium access network" link_type="float"

network_type="dense">

 <generator type="constant">

 <rows first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::CommunicationMedium::count_minus_one"/>

 <param name="constant_value" value="1"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <!--

 This network shows what medium is preferred when

communicating with a

 given agent.

 This network is actually a 3d network. It is agent x

agent x medium. One

 way to view it is a collection of agent x medium

networks. There is one of

 these agent x medium networks for every agent, so each

agent has a custom

 agent x medium network that shows what mediums he

prefers to use when

 communicating with any given agent.

 -->

 <network src_nodeclass_type="agent"

inner_nodeclass_type="agent"

target_nodeclass_type="CommunicationMedium" id="communication

medium preferences network 3d" link_type="float"

network_type="dense3d">

 <generator type="constant3d">

 <rows first="1"

last="nodeclass::agent::count_minus_one"/>

 <inners first="0"

last="nodeclass::agent::count_minus_one"/>

 <cols first="0"

last="nodeclass::CommunicationMedium::count_minus_one"/>

 <param name="constant_value" value="1"/>

81

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 <network src_nodeclass_type="Communication Medium"

target_nodeclass_type="knowledge" id="medium knowledge

network" link_type="bool" network_type="dense">

 <generator type="constant">

 <rows first="0" last=

"nodeclass::CommunicationMedium::count_minus_one"/>

 <cols first="0" last=

"nodeclass::knowledge::count_minus_one"/>

 <param name="constant_value" value="true"/>

 <param name="symmetric_flag" value="false"/>

 </generator>

 </network>

 </networks>

 <outputs>

 <output name="output_graph">

 <parameter name="network_name" value="knowledge

network"/>

 <parameter name="output_file" value="knowledge.csv"/>

 <parameter name="timeperiods" value="all"/>

 </output>

 <output name="output_graph">

 <parameter name="network_name" value="interaction

network"/>

 <parameter name="output_file"

value="interactions.csv"/>

 <parameter name="timeperiods" value="all"/>

 </output>

 </outputs>

</construct>

82

Appendix B A History of Construct

Construct is the embodiment of constructuralism, a mega-theory which states that the socio-

cultural environment is continually being constructed and reconstructed through individual

cycles of action, adaptation, and motivation. Many social science theories and findings are part

of the constructural theoretical approach including structuration theory (Giddens, 1986), social

information processing theory (Salancik & Pfeffer, 1978), symbolic interactionism (Manis and

Meltzer, 1978; Stryker, 1980), social influence theory (Friedkin, 1998), cognitive dissonance

(Festinger, 1957), social constructivism (Kim, 2001), and social comparison (Festinger, 1954).

In addition, several cognitive processes are embedded such as transactive memory (Wegner,

1987).

In 1990, research done by Kathleen M. Carley on group stability initiated early model

designs for Construct. In her paper, Group Stability: A socio-cognitive approach, she created a

socio-cognitive model based on nonstructural theory to predict changes in interaction patterns

among workers in a tailor shop in Zambia (Carley, 1990). The model tested behaviors that

occurred on individuals, such as social change or stability changes that were derived from

interaction, as well as the exchange of information between the workers. The resulting

observation and analysis of these behaviors provided an explanation for why the workers were

able to go on strike successfully after an aborted first strike. The first basic principle of the model

is that in every social group, there are facts within the group that have the potential to be learned

by members in the group. Information can be broken down into individual facts, which can then

be measured quantitatively for a social group. The second basic principle of the model states that

there is a probability that certain individuals will interact with one another and exchange facts,

which then leads to shared knowledge. The third basic principle states that similar individuals

who share common knowledge are more likely to interact. This implies that individuals consider

how much in common they have with others before they choose to interact and communicate

information. The combination of these three principles leads to the interaction/knowledge cycle,

which is what Construct is designed to simulate. This model initially takes a description of a

particular society in terms of culture and structure and predicts the ways in which the society can

evolve. With these concepts in place, the Construct model continued to evolve.

With advances in computing throughout the 1990’s, the Construct model gained more

opportunities and capabilities for real world application. The ability to process large amounts of

data to predict outcomes on large, scaled populations was critical in construct’s development.

One of the key developments for the Construct model computationally was research done on

knowledge transfer, and its effect on an organization or social group. In 2003, Schreiber and

Carley explored data base technology and its support of knowledge transfer. Virtual experiments

using the construct model were run using two group conditions, task complexity and experience,

to examine how task and referential data types differ when simulating knowledge transfer

(Schreiber & Carley, 2003). Transactive memory is also represented by the model to incorporate

perception of other’s knowledge in the social group. Each agent in the model is assigned task and

83

transactive knowledge, which are then represented by task databases and referential databases

(Schreiber & Carley, 2003). The virtual experiment showed that these databases influence task

complexity as well as experience, and that knowledge transfer can be represented in different

forms to effectively simulate transfer within an organization. Task data was shown to be most

useful for knowledge transfer of simple to moderate level tasks, while referential data was shown

to be more useful for complex tasks.

In 2004 Schreiber, Singh, and Carley, described a more complex version of the original

Construct-TM model. In addition to having the ability to interact with other human agents, in this

model agents could interact with objects that contain information, such as a book or an

advertisement. Agents were given several types of capabilities and limitations; examples

included control over the ability to communicate and receive information (Schreiber et al., 2004).

The number of agent groups was limited to 3 and the number of agents limited to 101 (Schreiber

2004). The interaction mechanism allowed agents to interact based on proximity, perception of

others, referrals, access to information, and the ability of forgetting. Knowledge was represented

as binary strings, which determined an agent’s decision as well as perception of other agents’

knowledge. Knowledge was limited to 500 facts and up to 25 tasks were assigned for each

particular knowledge bit.

New mechanisms for belief were abandoned, several different approaches for adding in

different communication logics were added, and new telecommunication technologies. The

ability to specify event histories in external scripts and new communication regimes supported

the ability to model taxpayer behavior (Carley & Maxwell, 2006). Geo-proximity modeling was

added to support assessment of terror groups (Moon & Carley, 2007). Collectively these changes

and others made the entire system more robust and more powerful at modeling the human

condition. At this point, the entire system was refactored, thereby increasing maintainability and

speed. The modern system is more expansive and can support many more agents and types of

communication technologies such as email, books, news, phone, call-centers, lectures,

billboards, web pages and so on. This system was then used to assess social change (Carley et

al., 2009) and non-compliance (Carley et al, 2010).

The next major innovation was the incorporation of social intelligence. The agents now

perceived their social network, constrained behavior based on socio-cognitive constraints on

network formation, thus focusing on their local sphere of influence (Joseph, Morgan et al.,

2014). This made it possible to increase the size of the populations that could be modeled,

increased the speed of processing, and increased the realism of the results. Memory usage was

now approximately linear with the number of agents.

Meanwhile Construct was more tightly integrated with ORA. The toolchain, linking

AutoMap (later NetMapper), ORA and Construct, meant that the user could go from text mining

to the extraction of networks, to simulation. This process supports model reuse and reduces time

to model large populations. It also means that models could be more easily instantiated with real

world data. This was used to assess revolutionary activity during the Arab Spring, and so to

84

predict revolutionary behavior given changes in what was covered in the news (Joseph, Carley,

et al., 2014).

85

Appendix C Additional Construct Generators

Group to Group Generators

Generators are created for a network based on a mapping between groups of nodes instead of

mappings between nodes.

Nodes in node groups do not have to be contiguous. The box generator only works on

contiguous nodes; if the nodes in a node group are not contiguous, you must use multiple box

generators. This can require thousands of box generators.

Thinking in terms of groups is more intuitive. Group to group generators can use a reference

to a second network for the mappings as well as references to the two group networks.

<network src_nodeclass_type=”agent”

 target_nodeclass_type=”knowledge”

 id=”knowledge network”

 link_type=”float”

 network_type=”dense”>

 <generator type=”group_to_group”>

 <rows first=”0” last=”0”/>

 <cols first=”0” last=”0”/>

 <param name=”src_net_name” value=”ag_to_kg_gen_net”/>

 <param name=”row_grp_membership_net”

 value=”’agent group membership network’”/>

 <param name=”col_grp_membership_net”

 value=”’knowledge group membership network’”/>

 </generator>

</network>

The above XML shows the group to group generator in use. Note that this generator is the

only generator for the knowledge network. The common rows/cols values are set to zero but are

not actually used. Instead, the following parameters are used:

src_net_name

• This parameter tells the generator where to find the group to group mapping. It refers

to another network that should already be loaded. In the example, the network is

called “ag_to_kg_gen_net”.

• Note that you can choose whatever network name you wish, but the src_net_name

value attribute must contain the chosen name.

 row_grp_membership_net

• This tells the generator where the membership network for the row groups is located.

In this case, the network’s name is “agent group membership network”.

• A membership network is a mapping of nodes to groups. In this case, it maps agents

to agent groups.

86

• Construct uses the “agent group membership network” for its own purposes.

You can use it for this parameter as well, but you can also substitute your own node

to nodegroup network. Just make sure you give the correct name in the

row_grp_membership_net value field.

 col_grp_membership_net

• This tells the generator where the membership network for the column groups is

located. In this case, the network’s name is “knowledge group membership

network”.

• This is a knowledge to knowledgegroup network.

• It is just like the row_grp_membership_net, but it applies to the column node set type,

which in this case is knowledge instead of agent.

<network src_nodeclass_type=”agentgroup”

 target_nodeclass_type=”knowledgegroup”

 id=”ag_to_kg_gen_net”

 link_type=”string”

 network_type=”dense”>

 <link src_node_id=”ag0” target_node_id=”fg0”

 value=”’gen_typeXXXrandombinary,meanXXX0.0’”/>

 <link src_node_id=”ag0” target_node_id=”fg1”

 value=”’gen_typeXXXrandombinary,meanXXX1.0’”/>

 <link src_node_id=”ag0” target_node_id=”fg2”

 value=”’gen_typeXXXrandombinary,meanXXX0.0’”/>

 <link src_node_id=”ag1” target_node_id=”fg0”

 value=”’gen_typeXXXrandombinary,meanXXX1.0’”/>

 <link src_node_id=”ag1” target_node_id=”fg1”

 value=”’gen_typeXXXrandombinary,meanXXX1.0’”/>

 <link src_node_id=”ag1” target_node_id=”fg2”

 value=”’gen_typeXXXrandombinary,meanXXX1.0’”/>

 <link src_node_id=”ag2” target_node_id=”fg0”

 value=”’gen_typeXXXrandombinary,meanXXX1.0’”/>

 <link src_node_id=”ag2” target_node_id=”fg1”

 value=”’gen_typeXXXrandombinary,meanXXX0.0’”/>

 <link src_node_id=”ag2” target_node_id=”fg2”

 value=”’gen_typeXXXrandombinary,meanXXX1.0’”/>

</network>

The above XML shows the mapping between the agent group and knowledge group

nodesets.

• Note the value string: gen_typeXXXrandombinary,meanXXX0.0.

• This is parsed to find the parameters for the generator for the mapping between

agentgroup: ag0 and knowledgegroup: fg0.

87

• Once parsed, the gen_type will be randombinary and its sole parameter “mean” will

be 0.0.

• If there should be more parameters, just follow the pattern and use XXX between

parameter name and its value and use a comma between individual parameters.

• Unfortunately, limitations in our XML parser preclude the use of more sensible

delimiters. Once fixed, we will change from XXX to something like “||” or “:”.

<network src_nodeclass_type=”knowledge”

 target_nodeclass_type=”knowledgegroup”

 id=”knowledge group membership network”

 link_type=”bool”

 network_type=”dense”>

 <generator type=”randombinary”>

 <row first=”0” last=”2”/>

 <cols first=”0” last=”0”/>

 <param name=”src_net_name” value=”ag_to_kg_gen_net”/>

 <param name=”mean” value=”1.0”/>

 <param name=”symmetric_flag” value=”false”/>

 <generator type=”randombinary”>

 <row first=”3” last=”5”/>

 <cols first=”1” last=”1”/>

 <param name=”src_net_name” value=”ag_to_kg_gen_net”/>

 <param name=”mean” value=”1.0”/>

 <param name=”symmetric_flag” value=”false”/>

 <!— This group contains facts after the first 5 -->

 <generator type=”randombinary”>

 <row first=”6”

 last=”nodeclass::knowledge::count_minus_one”/>

 <cols first=”2” last=”2”/>

 <param name=”src_net_name” value=”ag_to_kg_gen_net”/>

 <param name=”mean” value=”1.0”/>

 <param name=”symmetric_flag” value=”false”/>

 </generator>

</network>

The above XML shows the creation of a network containing the mapping between the

knowledge and knowledge group.

• Maps nodes to groups.

• Groups must exist in their own node set.

• Typically, the group nodeset’s name has the name of the nodes it will be associated

with followed by the word “group”.

• Example: agentgroup is a node set of agent groups.

88

• Example groups: finance_dept, advertising_dept, friendlist.

• Example: knowledgegroup is a node set of knowledge groups.

• Normal generators can be used so CSV, DyNetML, and constant generators are

typical for membership networks.

• Usually, the bounds of each group are critical.

• Example: finance has 10 agents in it; advertising has 3 agents, etc.

• If groups are not contiguous then generators can specify those agents too.

89

Appendix D Scripting

Reserved Words in the Construct Scripting Language and Input File

Variables and ‘Decisions’ are subsets of the more general concept of scripting within

Construct. In this section, we will discuss in more detail the parts of the scripting system. We

first begin on a rather important note by stating that when using the scripting functionality of

Construct, it is important that the modeler does not use any of the following words, which are

reserved for certain uses and, if used incorrectly, may provide unexpected results.

Table 18 Construct Scripting Language Reserved Words①

agent Random*②

bool randomBinary②

Construct② randomNormal②

delay_interpolation randomUniform②

details return

else set*③

error spaces_only

get*③ static_if

if timeperiod

preserve_all_white_space verbose

preserve_spaces_only ..

* An asterisk indicates a keyword beginning with the fixed text shown can be followed by

additional text. See notes ② and ③ below.

① All words beginning with an alphabetic character will be considered variables, though

in many cases it will only be a valid variable with the use of with.

② All words beginning with “construct” or “random” should not be used – though the list

above specifies all current reserved words, anything beginning with either of these two words

may become a reserved word at some point during future development.

③ Note that any string beginning with the word “get” or “set” is reserved for use with

referencing networks, and thus the remainder of the network reference must be one of the

networks that Construct is aware of, specified in CamelCase. Strings that begin with the word

“get” or “set” will be treated as a network reference.

Having stated what a researcher should not use when doing scripting in Construct, we now

define the lexemes that are possible within Construct’s scripting system. Note in the sections

below that an expression surrounded by angled brackets, such as <text>, indicates an

90

expression can be used in place of it. One other note is that in all cases below, square brackets

([]) and curly braces ({}) are deliberate and must be included.

Testing Construct Scripts

Construct has a built-in mechanism to help lexicographically check the validity of a script.

To do this, the researcher should include the “lexxy_test” parameter in the input file. The

researcher then inserts the script into the value attribute. Construct will parse and process the

script and the modeler can increase their confidence it is executing as they intended.

<param name="lexxy_test" value="[insert the script here]" />

General Syntax

§ Comment: /* <This is an example comment> */

 Comments within scripts occur within /* */, as shown above. It is important to note that

the user not put commas or quotes within comments. Beyond this, however, users should feel

free to use comments as desired, including the use of newlines, e.g.:

/* <This is another

 example comment> */

 § Quoted literal: '<Text>'

 To specify a string of text to be used, the user can enclose it within two single quotes. Again,

as with comments, the user should refrain from putting other single quote characters or commas

into quoted literals. To avoid errors where quoted literals are mistakenly not closed being too

confusing, there is a limit of 100 characters per literal – to create literals with more than 100

characters, concatenate multiple literals together.

 § Numbers: <Number> or <Number>.<Number>

 It is important to note two things when specifying numbers. First, Construct will attempt to

represent the number using the smallest type possible – that is, if the user does not explicitly (via

:float) or implicitly (via adding a .0) cast a number to a float, it will be stored as an integer.

Construct supports up to sixteen-bit, twos complement signed integers in addition to C-style

floats.

 § White space: <space> or <tab> or <newline>

 All whitespace is ignored by the Construct parser – please be aware that under certain

conditions, this may produce unexpected results. If the user wishes to specify a variable

addressing networks in Construct, which often have spaces, the user must refer to them within a

quoted literal.

 Mathematical Expressions

§ Sub-expression: (<Expr>)

91

Parentheses are used to create sub-expressions for two reasons. The first, as discussed in the

variables section, is to specify order of operations. The second is to specify subexpressions – for

example, when writing an if statement, it is necessary to use parentheses.

 § Addition: <Expr>+<Expr>

 § Subtraction: <Expr>-<Expr

 § Multiplication: <Expr>*<Expr>

 § Division: <Expr>/<Expr>

 § Exponentiation: <Expr>**<Expr>

The five mathematical operators are presented here together, for clarity. There are some

differences between these – chiefly, the addition operation performs a concatenation if either of

the operands used are strings; for instance, adding “test” and “1” will create the string “test1”. If

both operands are numeric or Boolean, then a standard addition will be performed – note that in

addition, as in all cases, the result will be a float if one at least one operand is a float and will be

an integer otherwise. Subtraction, multiplication, division, and exponentiation (which evaluates

to the C function pow()) can be used as expected and cannot be used with strings.

§ Concatenation: <Expr>,<Expr>

 Not to be confused with string concatenation, the concatenation operator is used to separate

two values in a sequence. This can be used to 1) create a list of entries, or 2) internally by the

parser to separate parameters from other scripting commands.

 § Subsequence: <StringExpr>/<StringExpr> or <StringExpr>|<StringExpr>

 The subsequence (/or |) operator is specifies a group of related items within a single

sequence, and can be used to specify a list within a list. It is important to note that the

subsequence operator is the same as the division and or operators, and will be used if one or

more of the expressions involved are strings. For example, 1/2/3 will be evaluated as a

numerical division operation, while 1/2/3:string will utilize the subsequence operator.

 § Enumeration: <Min>..<Max>

(AKA list operator or .. operator)

The enumeration operator is used to create a sequence of integers between the values of

<Min> and <Max>. The primary use for the enumeration operator is to create comma-separated

lists of integers quickly and concisely without having to utilize a loop.

<var name="timeperiod_list" value="1..5" />

92

In the example above the enumeration operator is used in the sequence 1..5, which will

generate the sequence 1,2,3,4,5. Further examples, re-illustrating the principle of left-to-right

evaluation, are provided below:

 3+1..5 -> 31,2,3,4,5

 (3+1)..5, -> 4,5.

Logical Expressions

§ Logical and: <Expr>&&<Expr>

§ Logical or: <Expr>||<Expr>

§ Exclusive or: <Expr>^<Expr>

§ Negation: !<Expr>

 The logical operators are defined together here for convenience. In the case that one of the

operands is a string, all the given operations will fail. Otherwise, all values will first be converted

to Booleans and then the expression will be applied. In all cases, if the expression evaluates to

true, the Boolean value 1.0 is returned, otherwise 0.0 is returned.

It is important to note that although Construct will be able to interpret it, the && operator is

not a standard XML token, and thus certain text and XML editors may warn that your syntax is

incorrect.

§ Equality: <Expr>==<Expr>

§ Inequality: <Expr>!=<Expr>

§ Less than: <Expr> < <Expr>

§ Greater than: <Expr> > <Expr>

§ Less than or equal to: <Expr> <= <Expr>

§ Greater than or equal to: <Expr> >= <Expr>

 The comparison operators are listed together here for convenience. If either value the

equality or inequality operations is a string, both sides of the equation are first converted to

strings, and then the comparison occurs. The less than, greater than, less than or equal to and

greater than or equal to operations will all fail if one or more of the operators are a string. If one

or more of the values are a float for any of these operations, then all values are converted to

floating point values before the comparison is completed. Finally, if both operands are integers,

then an integer comparison will be applied.

In all cases, it is important to keep in mind two things. First, if the expression evaluates to

true, a Boolean value of 1.0 is returned, otherwise, 0.0 is returned. Second, recall that Construct

does not implement operator precedence, and continues with right-to-left evaluations. Thus,

93

evaluating the expression 2+1==3 will result in a value of 2, because the script will compare 3

and 1, generating a value of 0, and then add this amount to 2. Though we only show this for the

== operator, the same holds for all others here.

As with the expression && above, standard XML editors do not allow for the use of < or >

(less than or greater than) in places outside of tags, and thus including these expressions in your

ConstructML may cause your editor to warn you that you have an error.

Generating Random Numbers

§ generate random number from a uniform distribution:

randomUniform(<MinExpr>,<MaxExpr>)

 § generate random number from a normal distribution:

randomNormal(<MeanExpr>,<VarianceExpr>,<MinExpr>,<MaxExpr>)

§ generate random binary values of 0 or 1:

randomBinary

These three functions allow for the creation of random numbers. In all cases, a new value is

generated each time a call to this expression is made, and thus, for example, would generate a

unique value for each turn if placed within an expression evaluated on each turn. The random

number generator utilized is the same one used by Construct, and hence utilizes the same seed.

The random number generator generates a new random number each time it is invoked, meaning

that the expression is evaluated as Construct is executed and not when the statement is parsed.

The randomUniform expression generates a randomly drawn floating point value from the

uniform distribution defined by the parameters <MinExpr> and <MaxExpr>, which can be any

values that evaluate to either integer or float values. If they are not supplied, (e.g., if the

expression is written as randomUniform(), the default values assumed are 0 and 1. Thus, a

call will generate a value inclusive of the minimum and maximum values given. If an integer is

desired, for example, between two and five, the user can utilize a call of the form

randomUniform(2,6):int.

The randomNormal number generator generates a float value from a normal distribution

with mean MeanExpr and variance VarianceExpr, and the MeanExpr, VarianceExpr,

MinExpr, and MaxExpr expressions can be anything evaluating to either a float or an int. If no

minimum or maximum values are specific, the range of possible values can theoretically go from

negative infinity to infinity. Note that these need not be symmetric, but that because there is

usually little need to evaluate infinity, it is often desirable to bound the distribution by

something. To adhere to the bounds, Construct uses post-processing – that is, it repeatedly draws

random numbers from a normal with the specified mean and variance until it finds values within

94

the desired range set by the minimum and maximum values, inclusive. Note that in certain cases,

this may be a very slow process.

The randombinary generator produces a value of 0.0 or 1.0.

Conditional Statements - IF

§ If expression:

if(<BoolExpr>) { < Expr> } else { <Expr> }

or

if(<BoolExpr>) { < Expr> } else if(<BoolExpr>) { < Expr> }

else { <Expr> }

The if (and subsequent else ifs and else statements) allow the scripting language to

evaluate a series of Boolean expressions. These expressions are evaluated sequentially, starting

with the first expression (which must be an if) through zero or more else if conditions to a final

(and required) else command. If any of the <BoolExpr> within one of these is true, then the

statement within the curly brackets is executed, and the rest of the conditions are ignored. Thus,

if expressions will execute only a single expression (or set of expressions) enclosed within curly

brackets.

Note that there are two significant departures from C-like syntax in

Construct’s version of an if statement.

First, the researcher must use curly brackets when expressing a

statement to be executed after an if or an else (note in C-like languages,

this is not necessary for single-line expressions).

Second, there cannot be an if statement without an else statement –

all curly brackets in an if expression that are not part of the final else

must be followed by an else (which may be part of an else if).

Thus, in the case that the user wants to test a single condition, the syntax would look

something like the following:

if(<BoolExpr>) { < Expr> } else { < Expr> }

 When testing a conditional inside the parentheses, it is necessary to have as output an

explicitly Boolean value. Thus, implicit conversion will not occur for floats or integers, to reduce

the possibility of user error. If a user wishes to use an integer, float, or string for the conditional,

they must explicitly cast with :bool. Finally, the returned types of all expressions executed

should match.

§ Static if expression:

95

static_if(<BoolExpr>) { <Expr> } else { <Expr> }

or

static_if(<BoolExpr>) { <Expr> }

else if(<BoolExpr>) { <Expr> } else { <Expr> }

The static_if expression differs from the standard if expression in that it is evaluated

statically – while if conditional is considered when the statement is executed, the static_if is

executed at the time at which it is parsed. This can be used in cases where the experimenter is

sure that the conditional statement will never change, and in these cases will dramatically speed

up execution time, as a static_if will be evaluated only once. Such a situation might occur if

the user were to test for some constant variable that may be changed once, by the user, in the file,

but will stay constant throughout the simulation.

The second use if the static_if is that if utilized, only the expressions within the brackets

{} of the conditional evaluating to true will be evaluated. Thus, one can introduce whole sections

of code conditional on whether a variable is initialized to a certain value, where if it is not, that

code will never be utilized by Construct. Simply put, however, the difference between if

statement and a static_if is portrayed best in the following example: Consider the two,

 if(timeperiod > 0)…

 static_if(timeperiod > 0)…

In the case of the if statement, the condition would be evaluated each turn of the simulation –

thus at every time period after the first, the code within the if statement would be run. In contrast,

the static_if would be checked one time, when it was parsed. Because it evaluates to false in that

case, the code will never be run.

§ Assignment: $variable$ = <Expr>;

 The assignment operator, or the equals sign, allows the assignment of the value on the right

hand side to the variable on the left, which must be surrounded by dollar signs. The right hand

side of the equation can be any expression, though note that it must end with a semicolon (;).

This expression can include any variables declared previously that have already had values

assigned to them.

Upon assignment, the variable with name variable will be given the type of the type for

whatever the right hand side evaluates to. Assignments take on a global scope within the

ConstructML attribute they are defined in – thus, unlike, for example, C, a variable defined as

such inside a loop can be utilized outside of it. However, once outside of an attribute, the

variable loses that definition – even within the same element, a variable declared in its “name”

attribute will be different than one defined in its “value” attribute.

When a variable is used, it is given a variable type. If the right-hand side expression is a

Boolean the first time the variable is initialized, the variable will be type as a Boolean.

Otherwise, if it is an integer, float, or string, the variable will be typed as an integer, float, or

96

string (respectively). The most specific type that can be used for a variable will be used to type

the variable. If a specific variable type is to be used, the right-hand side can be cast to the desired

type using the cast (:) operation.

An additional point to note is that it is necessary to declare any variable first declared on the

left-hand side of an assignment using a with variable, as is done in the example in Table 19

below with the variable result. As can also be seen in Table 19 below, it is necessary to include

a return statement in the script to specify which result will be returned. If the end of a script does

not contain a return statement, the parser will error.

Table 19. Examples of foreach loops.

Variable Value

<var name="loop1" value="

$result$ = ''; /* init return var */

foreach i ('a', 'b', 'c', 'd') {

 $result$ = $result$ + i;

}

return $result$;"

with=“$result$”/>

"abcd"

<var name="loop2" value="

$result$ = ''; /* init return var */

foreach i ('e', 'f', 'g', 'h') {

 $result$ = $result$ + i;

}

return $result$" /* as last command in script, semi-colon

optional */

/> <!-- with optional in this case -->

"efgh"

<decision name="loop2" value="foreach col (0..10) {

 setKnowledgeNetwork[row:int,col:int,0]

}"

with=”row=2”/>

 (sets network

row [2,0-10]

cells to zero)

§ Error: error(<StringExpr>)

The error expression will force Construct to output the string given and then exit immediately

after being evaluated. Typically, one will want to use this to debug code to make sure that

“impossible” conditions within the code are never hit. If a string expression is not given, a

default message of “<no error message provided>”) will be returned. Note that the string

expression can be a quoted literal but can also be a dynamically evaluated string variable.

Looping - Foreach

§ Foreach expression: foreach $iterator$ (<IterableExpr>)

{ <Expr> }

97

 The foreach loop allows the user to give a list that can be iterated over to produce an

aggregated result. To use a foreach loop, one must specify the foreach keyword, then the name

of the parameter while will be used to iterate over the list enclosed by dollar signs, followed by

the parentheses enclosing what is to be iterated over, and then finally the statements to be run for

each element in the list within the brackets {}. For example, the expression “foreach val

(1,2,3)” will generate a parameter, val, which will be given a value of 1, 2 and then 3 on the

first, second and third iterations of the loop, respectively.

Within the brackets, a sequence of any number of statements can be written – in most cases,

these statements will include reference to the iterator parameter, and in many other cases will use

variables, such as an aggregate variable, outside the loop as well. However, loops can also use

the set* operations and therefore will not always need such an aggregate value.

In the case that the user does not, under certain conditions, want to iterate through the entire

loop, a return statement, which will break the loop and return a value from the script

immediately, can be used within an if statement. In addition, it is important to note that foreach

loops can be embedded within other results, and that results coming from a foreach can be used

outside of the loop.

 Return

§ Return: return <Expr>;

 The return statement allows for a script to return a value at any point during its execution- it

is mostly intended for use with complicated scripts. All return statements must begin with the

word return but must only have a trailing semicolon if they are not placed at the end of a script.

Perhaps most importantly, the user must note that in ignoring whitespaces, Construct will

interpret something of the form “return_val” as meaning the need to return the variable _val, and

thus should not be used. However, expressions after the return statement, such as return

$count$+1; will evaluate correctly (i.e., in this case will return the value stored in count plus

one).

Another important point is that statements which contain assignments if statements or

foreach must contain a return statement so that the script in its entirety returns a value. In the

case where this does not happen, Construct should error. Finally, values evaluated as part of an

expressionvar are considered to be part of the script- thus, any return statements in the expression

variable will serve as returns for the entire script.

Macros

§ Macro variable expression: $<Name>$

 Macros may be the most important tool in developing an extendible and maintainable deck,

but also may be the most confusing to the reader. A macro is defined in two parts. First, within

the script, an identifier (name) for the macro is placed between two dollar signs. Like in all cases

98

in Construct, this identifier should be limited to alphanumeric characters. Second, the variable

value for the macro should be specified – in most cases, this will occur in the with tag of the

enclosing piece of ConstructML. The with tag must address the same identifier, and the second

dollar sign must be immediately followed with an assignment operator.

The results of macro expansion directly affect the text of the expression. So, for example, in

Table 20, the expansion of the variable i is converted to an integer and incremented in

variable x1. In contrast, the substituted variable can also create a new lexeme – in variable x2

the expansion will substitute in the value 1 for i, creating a new variable,

construct::intvar::x1.In turn, when this is expanded and evaluated, x2 will then take on

the value of x1.

Table 20. Examples of macros.

Variable
Variable of

Interest
Value

<var name="x1" value="i:int+1" with="i=1"/> x1 "2"

<var name="x1" value="i:int+1" with="i=1"/>

<var name="x2" value="construct::intvar::xi"

with="i=1"/>

x2 "2"

<var name="x1" value="i:int+1" with="i=1"/>

<var name="x2" value="construct::intvar::xi"

with="i=1"/>

<var name="x3" value="construct::intvar::x

$2*i:int$+1" with="i=1"/>

x3 "3"

<var name="xi" value="i" with="i=(4,5)"/> x4, x5 "4", "5"

In most cases, variables should be defined inside of the with tag, as is the case with x1, x2,

and x3. Note that the value of the macro variable must be written as a string but can easily be

cast to any desired type. Also, note that it is possible to have several macro variables each having

separate variable lists –thus, if there are three values for macro i and four for macro j, then

twelve different expansions will be performed.

It is important to remind the reader that not all values surrounded by dollar signs are macros

– for example, variables used in assignment operators may be modified dynamically as the script

is evaluated, and such variables are thus usually specified as with parameters to ensure that they

are recognized by the parser. The difference here is that macros, being defined by the parser, are

static and cannot change during execution but may be embedded in more complex variable

names. Finally, note that variables created via macros can be accessed in the standard way- for

example, we see that the last example gives us x4 and x5, not a variable with the name xi.

99

Get/Set Network Values

§ Get network value: get<NetworkName>[<RowExpr>,<ColExpr>]

§ Set network value: set<NetworkName>[<RowExpr>,<ColExpr>,<ValueExpr>]

 The word get, when followed immediately by the name of a network in CamelCase (e.g.,

getKnowledgeNetwork) retrieves the given value from a specific location in a network. The

location is indexed by two integers in brackets, where network value operation retrieves the

value as a specific location in a network. For this expression to function, the network must exist,

the row and column values given must be integers, be enclosed by bracket characters ([]) and be

separated by a comma (,). The returned value will have the type of the network the call is made

to. Also, it is important to note that these calls are somewhat time intensive, and thus the user

should take care when making such calls repeatedly, such as making them inside loops or at

every turn of the simulation. Finally, note that variables cannot yet be initialized in this way, as

variables are currently initialized before networks.

Similarly, the word set, followed immediately by the name of a network in CamelCase, can

be used to change the value at a given row and column in a network. In this case, it is important

to verify that the value given in <ValueExpr>, which will be the value that this row and column

are set to, is of the same type as the network it is being set in. Otherwise, Construct will exit with

an error. Note that this is the case even where an implicit cast would make sense – i.e., from

integer to Boolean. It is also important to note that the set command returns a value, which is

equal to <ValueExpr>.

 § Get aggregate network values: get<NetworkName>[<RowExpr>,<ColExprString>]

This version of the get expression will simply call get on a single row in a table and a series

of columns, given by the indices listed in the list ColExprString, a string containing a series of

comma-separated integers. The value returned by this function is the sum or concatenation of

these values. A common usage of the aggregate get call is to get the network values for a specific

group of agents or facts – for example, we can get the number of facts in the knowledge group G

that agent 0 knows with the call:

getKnowledgeNetwork[0, construct::knowledgegroupvar::G]

 § Set aggregate network values:

set<NetworkName>[<RowExpr>,<ColExprString>,<ValueExpr>]

The set aggregate network values operation analogous to the set expression, except with a list

of columns. In this case, the value returned is the summation or concatenation of all values set.

Additionally, one should note that if the expression ValueExpr references a dynamic value, such

as a call to a uniform random number generator, then the value will be recomputed for each

element in <ColExprString>.

100

 ReadFromCSVFile

§ Get value from csv file:
readFromCSVFile[<FileExpr>,<RowExpr>,<ColExpr>]

<var name=”param_val_col” value=”1” />

<var name="attack_prob" value="readFromCSVFile[params.csv,0,

 construct::intvar::param_val_col]:float" />

This command reads a value from a CSV file named params.csv in the example above. The

file location is relative to the location of the Construct execution directory. The file must also

have a value at location <RowExpr>,<ColExpr> (row 0,column 1 in the example above). If all

these conditions are true, then Construct will return the value at the given row and column of the

CSV, otherwise, it will exit with a failure. Note that file input can be extremely time-intensive,

and thus this command should be used with care.

101

Appendix E Construct in High Performance Computing (HPC)

Environments

In many ways, the resource we are concerned when we do simulation shifts from the person-

hours necessary to complete surveys and in-depth interviews to computational complexity in

both time and space. In particular, the goal is to be able to complete a large-scale simulation

project with the idea of “single-click” from starting the simulation through result generation, and

with an implementation that allows us to quickly tweak simulation parameters and rerun all

simulations.

To understand the difficulties associated with simulation in a large-scale project, we now

present the scenario we faced in a previous experiment, described in more detail in Carley and

Maxwell (2006). In this project, we were faced with approximately 2,000 runs, each of a

population of 4,000 agents, along with their attributes, their initial knowledge, and the associated

social network. This model, perhaps one of the most complex social simulation models run in

Construct, took nearly five hours per run. Thus, the sequential cost of running these simulations

for a single researcher on a single processor is just about enough time for a research grant to

expire. Luckily, a series of innovations in computing over the past fifty or so years, with which

most of us are familiar have saved us from such a fate. In this section, we detail such innovations

for the interested user, and then give examples of how to utilize the tools for HPC environments

employed at CASOS.

The first innovation, of course, is the ability for computers to talk to each other. This allows

us to use a single terminal to run simulations on other computers at our disposal and have them

return the results. The second innovation was the development of multi-core processors and

computers with multiple processors. Because Construct, by default, runs on a single core of a

processor, we can not only run our simulations on other computers, but to run multiple

simulations on each of them at the same time, independently of each other. The computing

power of our center is likely better than most settings, but by no means ideal. Upon the running

of simulations for Carley and Maxwell (2006), our center possessed 234 processor cores upon

which simulation runs could be done, though many of these cores were being intermittently used

by other members of our research center.

The final innovation of computer science, the MapReduce framework (Apache Software

Foundation, 2019; MapReduce, 2020;), answers the question of how we can “black-box” both

the distribution of simulations and the coalition of their output to various machines that can be

potentially interrupted at any time. In its most basic definition, the MapReduce framework

“maps” out simulations to different machines, ensuring in some way that we will receive output

from each machine, and “reduces” all our output to a single format which we can specify.

Several open-source packages exist to implement the MapReduce framework on computers

that researchers have available to them. Importantly, such a framework allows the researcher to

be ignorant of the number of processors he or she has available – the MapReduce concept works

102

in the same way (though with obvious time increases) on a single core as it does on the millions

of cores used by companies such as Google. We use the HTCondor (formerly Condor) High

Throughput Computing (HTC) software (https://research.cs.wisc.edu/htcondor/) to connect

machines in our center, and their DAGMan (Directed Acyclic Graph Manager)

(https://research.cs.wisc.edu/htcondor/dagman/dagman.html) application, along with some

straightforward scripting, to implement the MapReduce framework.

The MapReduce framework, along with some well-known interventions, allow our workflow

to have two vital properties. First, the given workflow maximizes the resources available to the

researcher. A problem which could have naively taken, even under ideal computing

circumstances on a single machine, months to complete, has been reduced to a few days at most.

Indeed, a researcher need not even obtain more machines, as with the advent of cloud computing,

they can access technologies that hide all implementation details of the MapReduce framework

and give cheap access to an unlimited supply of machines, such as Amazon’s EC2 cluster.

Indeed, workflow technologies like SORASCS (Schmerl 2011) are rapidly evolving to allow full

workflow to be completed without a research having access to anything other than a single

computer and the Internet. If the researcher does have a large supply of machines available, such

speedup has been achieved with free, open-source, easy-to-install technologies.

Having explained, at a high level, the concepts incorporated in running Construct in parallel

on multiple machines, it is now useful to describe in more detail how such tools can be utilized.

The first objective, of course, is to obtain some way of submitting Construct runs to multiple

machines. Here, we will discuss the HTCondor cluster framework implemented at CASOS. The

first step, of course, is to install HTCondor onto machines in your cluster- this step is not covered

here but is described in detail in the HTCondor setup manual, located at

https://htcondor.readthedocs.io/en/latest/index.html.

Once installed properly, a machine with HTCondor installed on it and a user with submission

privileges from that machine can submit jobs from that machine onto the cluster in a series of

simple steps. First, the user should set up a CSV file with the parameters indicating the

conditions of the experiment they would like to have changed. From here on out, we will refer to

this file as the conditions file, to represent the fact that it holds all the conditions necessary for

the entire experiment. We will differentiate this later with a parameter file, which holds the

conditions necessary to run a single cell of the experiment. In a trivial experiment, where the

goal is to test an effect on different population sizes, the conditions file would look something

like this:

 AgentSize,10,100,100

The first column of the file simply labels the condition being changed - though this is not

necessary (we will never tell Construct to look at this value), it is naturally useful in keeping

track of which lines of your parameters file refer to which condition. Once this parameter file has

https://research.cs.wisc.edu/htcondor/
https://research.cs.wisc.edu/htcondor/dagman/dagman.html
https://htcondor.readthedocs.io/en/latest/index.html

103

been specified, we need some way to submit (in this case) three different runs to multiple

machines via HTCondor. To do so, we need to complete three further steps.

The first step is to create three different parameter files - one for each of the different

conditions. This can be done using your favorite scripting language. Below, we give a simple

example, in Python, which reads a conditions file and generates a parameter file (recall that a

parameter file is simply a set of conditions necessary to run a single experiment) in a directory

whose name specifies the conditions for that directory. (Note that if you are not comfortable

doing such programming, for small experiments, it is quite easy to do this step manually).

import csv, itertools, os

with open("conditions_file.csv", "r") as condFile:

 reader = csv.reader(condFile)

 values = []

 conditionTitles = []

 for line in reader:

 conditionTitles.append(line[0])

 values.append([val for val in line[1:] if val != ""])

 experimentalSet = list(itertools.product(*values))

 numVals = len(conditionTitles)

 for experiment in experimentalSet:

 condsString = '_'.join(str(i) for i in experiment)

 os.mkdir(condsString);

 with open(os.path.join(condsString,"params.csv"), "w") as paramFile:

 for i in range(numVals):

 paramFile.write(conditionTitles[i]+ "," + experiment[i] + '\n')

To run this script, place it in the same directory as your conditions file, name the conditions

file “conditions_file.csv”, and use Python (this example was written for Python version 2.7) to

run the script. For information on how to download Python and run a script, consult the Python

documentation at https://www.python.org/.

Assuming you use the same methodology suggested in the script above, you will now have

the following in the directory in which you placed your conditions file and ran the script: your

conditions file (conditions_file.csv), the python script

(your_naming_of_python_script_above.py) and three Folders 10, 100, and 100, each with one

file called params.csv. The second step to submit to HTCondor is to develop your model (i.e., the

XML file described above) and to allow the model to read in as a parameter from a CSV file the

conditions you are interested in. In this case, we would change the “agent_count” variable to

be instantiated as follows:

<var name="agent_count" value="readFromCSVFile[“params.csv”,0,1]/>

As we know from the above sections, this tells Construct to read the agent_count variable

from the first (zeroth) row and the second (zero-indexed) column of the csv file “params.csv”.

Once we have done this, we can add our XML file to the directory we are working in (i.e., at the

same level as conditions_file.csv). Note that this implementation will only require us to have a

https://www.python.org/

104

single model file, which is desirable with respect to person-hours required to change the model

and the amount of space needed to store results.

The final step is to create a submission file that HTCondor will use. Though we do not detail

in depth the details of HTCondor submission, below is a file that, placed at the same level of the

directory as your XML model file, will allow you to run the simple experiment described here.

Note that you should replace YOUR_MODEL_FILE_NAME.xml with the name of your XML file

and include a construct executable with the name “Construct.exe” in your directory as well.

universe = vanilla

requirements = ((ARCH == "INTEL" || ARCH=="X86_64") &&

((OPSYS == "WINNT51") ||(OPSYS == "WINNT52") || (OPSYS == "WINNT61") ||

(OPSYS == "WINDOWS"))

should_transfer_files = YES

when_to_transfer_output = ON_EXIT

executable = Construct.exe

transfer_executable = true

notification = Never

arguments = YOUR_MODEL_FILE_NAME.xml

output = out_setup_to_construct.txt

error = err_setup_to_construct.txt

log = condor.log

transfer_input_files = params.csv

initialdir = 10

queue

initialdir = 100

queue

initialdir = 1000

queue

The file, generally, tells HTCondor where to find your executable and model file, and then to

run three times in each of your experimental directories, using the parameter file within that

directory. This file also contains requirements for what operating system to run on, and specifies

that all files written out by Construct (e.g., in ReadGraph operations) should be transferred back

to your machine after they are run. Putting the text above into a file called

“condor_submission.sub” and assuming the PATH variable on your machine includes the

HTCondor executables, opening a command prompt, changing to the directory we have

discussed here, and typing in the following will run the given experiment.

THIS_DIRECTORY> condor_submit condor_submission.sub

You can use other HTCondor programs, such as condor_q to check the status of your runs

- for full details, see the Condor manual (https://htcondor.readthedocs.io/en/latest/man-

pages/condor_q.html) and (Knoeller, 2013).

https://htcondor.readthedocs.io/en/latest/man-pages/condor_q.html
https://htcondor.readthedocs.io/en/latest/man-pages/condor_q.html

105

Appendix F Construct in Research Literature

Below are some brief descriptions of projects that used Construct. Links to the full

publications and project sites are available in the References section.

Predicting Intentional and Inadvertent Non-compliance

By: Kathleen M. Carley, Dawn C. Robertson, Michael K. Martin, Ju-Sung Lee, Jesse L. St.

Charles, Brian R. Hirshman (Carley et al., 2010)

Models for predicting intentional and inadvertent errors on tax returns were developed using

two approaches: the first was metamodeling using literature on errors, and the second was using

statistical machine learning to derive a model from tax audits. The reliability of the models is

dependent on the amount of data, the quality of the data, and whether the learning techniques are

supervised or unsupervised. IRS audit data does have some reliability issues; the taxpayer’s

motives are unknown at the time of filing, and the standard is high for proving intentional

misreporting. The models take these biases into account through an ensemble modeling

approach. The methods shown in this study are useful in creating a predictive model of taxpayer

behavior.

Agent Interactions in Construct: An Empirical Validation using Calibrated Grounding

By: Craig Schreiber, Kathleen M. Carley (Schreiber & Carley, 2007)

Schreiber and Carley conducted a validation study for Construct. The focus of the study was

on the ability of Construct to produce an initial state of agent interactions which resemble how a

real world network communicates. The calibrated grounding technique was used to validate the

model. Construct was shown to produce a valid initial state of interactions.

Computational organization science: A new frontier

By: Kathleen M. Carley (Carley, 2002)

According to synthetic adaptation, any entity that is composed of intelligent, adaptive, and

computational agents is also an intelligent, adaptive, and computational agent. Organizations are

inherently computational because of synthetic adaptation. The behavior of groups and

organizations can be explained by using multi agent computational models that are composed of

intelligent adaptive agents. Construct is an example of such a model; by combining a network

with a multi-agent approach, the model becomes more realistic. A series of virtual experiments

use this model to show the power of this approach for analysis of societies and organizations.

A Dynamic Network Approach to the Assessment of Terrorist Groups and the Impact of

Alternative Courses of Action

By: Kathleen M. Carley (Carley, 2006)

Dynamic network analysis is based on the collection, analysis, understanding, and prediction

of dynamic relations amongst various entities such as actors, events, and resources, and their

106

impact on individual and group behavior. Using dynamic network analysis, terrorist groups were

examined as complex dynamic networked systems that evolve over time. The use of dynamic

network analysis tools to analyze a terrorist group is demonstrated. Techniques that are

demonstrated include identifying sphere of influence amongst actors, determining emergent

leaders in the network, and how using network metrics can assess the impacts of various actions

within the group.

Modeling Complex Socio-technical Systems using Multi-Agent Simulation Methods

By: Maksim Tsvetovat, Kathleen M. Carley (Tsvetovat & Carley, 2004)

To study complex social and technological systems, underlying psychological and

sociological principles, as well as communication patterns and technologies within these systems

must be measured and understood. The creation of high fidelity models of these systems requires

a combination of analytical models with empirically grounded simulation, to form multi agent

systems. These multi agent systems incorporate learning algorithms as well as other social

network phenomena. The power of these methods are demonstrated by creating a multi-agent

network model of networks such as terrorist organizations. This ultimately creates a

generalizable and valuable process for analyzing complex social systems, by using AI algorithms

combined with an analytic approach.

On the Coevolution of Stereotype, Culture, and Social Relationships: An Agent-Based

Model

By: Kenneth Joseph, Geoffrey P. Morgan, Michael K. Martin, Kathleen M. Carley (Joseph,

Morgan, et al., 2014)

The theory of constructuralism describes how shared knowledge, representative of cultural

forms, develops between individuals through social interaction. Constructuralism argues that

through interaction and individual learning, the social network (who interacts with whom) and

the knowledge network (who knows what) coevolve. In the present work, we extend the theory

of constructuralism and implement this extension in an agent-based model (ABM). Our work

focuses on the theory’s inability to describe how people form and utilize stereotypes of higher

order social structures, in particular observable social groups and society as a whole. In our

ABM, we formalize this theoretical extension by creating agents that construct, adapt, and utilize

social stereotypes of individuals, social groups, and society. We then use this model to carry out

a virtual experiment that explores how ethnocentric stereotypes and the underlying distribution

of culture in an artificial society interact to produce varying levels of social relationships across

social groups. In general, we find that neither stereotypes nor the form of underlying cultural

structures alone are sufficient to explain the extent of social relationships across social groups.

Rather, we provide evidence that shared culture, social relations, and group stereotypes all

intermingle to produce macrosocial structure.

